Modeling the evolution of crystallographic dislocation density in crystal plasticity

Dislocations are the most important material defects in crystal plasticity, and although dislocation mechanics has long been understood as the underlying physical basis for continuum crystal plasticity formulations, explicit consideration of crystallographic dislocation mechanics has been largely absent in working constitutive models. Here, dislocation density state variables evolve from initial conditions according to equations based on fundamental concepts in dislocation mechanics such as the conservation of Burgers vector in multiplication and annihilation processes. The model is implemented to investigate the polyslip behavior of single-crystal aluminum. The results not only capture the mechanical stress/strain response, but also detail the development of underlying dislocation structure responsible for the plastic behavior.

[1]  Norman A. Fleck,et al.  Strain gradient crystal plasticity: size-dependentdeformation of bicrystals , 1999 .

[2]  Groma,et al.  Dislocation patterning: from micro- to mesoscale description , 2000, Physical review letters.

[3]  Phillips,et al.  Mesoscopic analysis of structure and strength of dislocation junctions in fcc metals , 2000, Physical review letters.

[4]  S. Nemat-Nasser,et al.  A constitutive model for fcc crystals with application to polycrystalline OFHC copper , 1998 .

[5]  K. Schwarz,et al.  Simulation of dislocations on the mesoscopic scale. I. Methods and examples , 1999 .

[6]  Hussein M. Zbib,et al.  On plastic deformation and the dynamics of 3D dislocations , 1998 .

[7]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[8]  A. Argon,et al.  Physics of Strength and Plasticity , 1969 .

[9]  Paul R. Dawson,et al.  On modeling the development of crystallographic texture in bulk forming processes , 1989 .

[10]  W. Lomer A dislocation reaction in the face-centred cubic lattice , 1951 .

[11]  A. Argon CHAPTER 21 – MECHANICAL PROPERTIES OF SINGLE-PHASE CRYSTALLINE MEDIA: DEFORMATION AT LOW TEMPERATURES , 1996 .

[12]  A. Keh,et al.  Latent hardening in iron single crystals , 1966 .

[13]  E. Orowan,et al.  Problems of plastic gliding , 1940 .

[14]  U. F. Kocks,et al.  Latent hardening in aluminum , 1966 .

[15]  H. Dai Geometrically-necessary dislocation density in continuum plasticity theory, FEM implementation and applications , 1997 .

[16]  Anthony G. Evans,et al.  A microbend test method for measuring the plasticity length scale , 1998 .

[17]  A. Kumar,et al.  Study of work hardening models for single crystals using three dimensional finite element analysis , 1999 .

[18]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[19]  U. F. Kocks,et al.  A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable , 1988 .

[20]  U. F. Kocks,et al.  Application of polycrystal plasticity to sheet forming , 1994 .

[21]  R. Becker,et al.  Effects of grain interactions on deformation and local texture in polycrystals , 1995 .

[22]  T. Takeuchi Work Hardening of Copper Single Crystals with Multiple Glide Orientations , 1975 .

[23]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[24]  L. P. KUBINa,et al.  Mesoscopic modelling and simulation of plasticity in fcc and bcc crystals : Dislocation intersections and mobility , 1998 .

[25]  Michael Ortiz,et al.  Computational modelling of single crystals , 1993 .

[26]  U. F. Kocks Thermodynamics and kinetics of slip , 1975 .

[27]  A. Arsenlis Modeling dislocation density evolution in continuum crystal plasticity , 2001 .

[28]  Lallit Anand,et al.  Elasto-viscoplastic constitutive equations for polycrystalline fcc materials at low homologous temperatures , 2002 .

[29]  Amit Acharya,et al.  Grain-size effect in viscoplastic polycrystals at moderate strains , 2000 .

[30]  K. Kunze,et al.  Orientation imaging: The emergence of a new microscopy , 1993 .

[31]  W. King,et al.  Observations of lattice curvature near the interface of a deformed aluminium bicrystal , 2000 .

[32]  E. B. Marin,et al.  On modelling the elasto-viscoplastic response of metals using polycrystal plasticity , 1998 .

[33]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .

[34]  John L. Bassani,et al.  Latent hardening in single crystals. II. Analytical characterization and predictions , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[35]  D. Parks,et al.  Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density , 1999 .

[36]  Lallit Anand,et al.  Elasto-viscoplastic constitutive equations for polycrystalline metals: Application to tantalum , 1998 .

[37]  M. Ortiz,et al.  Constitutive modeling of L12 intermetallic crystals , 1993 .

[38]  R. Davis,et al.  Effect of orientation on the plastic deformation of aluminum single crystals and bicrystals , 1957 .

[39]  Ladislas P. Kubin,et al.  Dislocation Microstructures and Plastic Flow: A 3D Simulation , 1992 .

[40]  R. Lardner Dislocation dynamics and the theory of the plasticity of single crystals , 1969 .

[41]  P. Dawson,et al.  Modeling crystallographic texture evolution with finite elements over neo-Eulerian orientation spaces , 1998 .

[42]  J. Bassani,et al.  Non-associated plastic flow in single crystals , 1992 .

[43]  J. Bassani,et al.  Non-Schmid yield behavior in single crystals , 1992 .

[44]  W. Hosford,et al.  Tensile deformation of aluminum single crystals at low temperatures , 1960 .

[45]  S. Nemat-Nasser,et al.  A physically-based constitutive model for BCC crystals with application to polycrystalline tantalum , 1998 .

[46]  L. Anand,et al.  Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[47]  A. Zaoui,et al.  Multislip in FCC and BCC Crystals: a Theoretical Approach Compared with Experimental Data , 1982 .

[48]  R. J.,et al.  I Strain Localization in Ductile Single Crystals , 1977 .