Using projection to accelerate Ray Tracing

USING PROJECTION TO ACCELERATE RAY TRACING An ast asia Bezerianos M.Sc. Graduate Department of Cornputer Science University of Toronto 2001 The high cost of Ray Tracing image rendering has driven many researchers to devise acceleration techniques like bounding volume hierarchies. This thesis introduces new ways of building bounding volume hierarchies. We modify existing algorithms to use bounding volumes projected ont0 the viewing and light planes. This allows faster traversal of less tight hierarchies. First, hierarchical structures are constnicted using only the information derived fiom the projection of the bounding volumes. Second, a view independent hierarchical structure is projected ont0 the viewing and light planes. Finally, we augment each of the previous hierarchies with testing rayç against both the projected and the view independent volume. Thus fast traversal of the hierarchy and tight modeling are combined. Testing demonstrates that projection hierarchies accelerate Ray Tracing when the number of objects in a scene is large and the number of possible hierarchies to choose hom is limited.

[1]  Eric Hoines,et al.  A Proposal for Standard Graphics Environments , 1987, IEEE Computer Graphics and Applications.

[2]  James Arvo,et al.  A survey of ray tracing acceleration techniques , 1989 .

[3]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[4]  Joseph S. B. Mitchell,et al.  Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998, IEEE Trans. Vis. Comput. Graph..

[5]  Michael R. Kaplan,et al.  The Use of Spatial Coherence in Ray Tracing , 1987 .

[6]  John Salmon,et al.  Automatic Creation of Object Hierarchies for Ray Tracing , 1987, IEEE Computer Graphics and Applications.

[7]  James T. Kajiya,et al.  Ray tracing complex scenes , 1986, SIGGRAPH.

[8]  Michael F. Cohen,et al.  State of the Art in Image Synthesis , 1990, Advances in Computer Graphics.

[9]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[10]  Andrew S. Glassner,et al.  An overview of ray tracing , 1989 .

[11]  Donald P. Greenberg,et al.  Improved Computational Methods for Ray Tracing , 1984, TOGS.

[12]  Philip M. Hubbard,et al.  Collision Detection for Interactive Graphics Applications , 1995, IEEE Trans. Vis. Comput. Graph..

[13]  Samuel P. Uselton,et al.  Statistically optimized sampling for distributed ray tracing , 1985, SIGGRAPH.

[14]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[15]  Gino van den Bergen Efficient Collision Detection of Complex Deformable Models using AABB Trees , 1997, J. Graphics, GPU, & Game Tools.

[16]  Kalpathi R. Subramanian,et al.  Factors Affecting Performance of Ray Tracing Hierarchies , 1990 .

[17]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, CACM.

[18]  Leonidas J. Guibas,et al.  BOXTREE: A Hierarchical Representation for Surfaces in 3D , 1996, Comput. Graph. Forum.

[19]  Kok-Lim Low,et al.  Computing bounding volume hierarchies using model simplification , 1999, SI3D.

[20]  Rafail Ostrovsky,et al.  Efficient search for approximate nearest neighbor in high dimensional spaces , 1998, STOC '98.

[21]  WhittedTurner An improved illumination model for shaded display , 1979 .

[22]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[23]  Vlastimil Havran,et al.  Heuristic ray shooting algorithms , 2000 .

[24]  Mark A. Z. Dippé,et al.  Antialiasing through stochastic sampling , 1985, SIGGRAPH.

[25]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.