Dimension Reduction for Finite Trees in $$\varvec{\ell _1}$$ℓ1

We show that every $$n$$n-point tree metric admits a $$(1+\varepsilon )$$(1+ε)-embedding into $$\ell _1^{C(\varepsilon ) \log n}$$ℓ1C(ε)logn, for every $$\varepsilon > 0$$ε>0, where $$C(\varepsilon ) \le O\big ((\frac{1}{\varepsilon })^4 \log \frac{1}{\varepsilon })\big )$$C(ε)≤O((1ε)4log1ε)). This matches the natural volume lower bound up to a factor depending only on $$\varepsilon $$ε. Previously, it was unknown whether even complete binary trees on $$n$$n nodes could be embedded in $$\ell _1^{O(\log n)}$$ℓ1O(logn) with $$O(1)$$O(1) distortion. For complete $$d$$d-ary trees, our construction achieves $$C(\varepsilon ) \le O\big (\frac{1}{\varepsilon ^2}\big )$$C(ε)≤O(1ε2).

[1]  J. M. Sek On embedding trees into uniformly convex Banach spaces , 1999 .

[2]  Yuval Peres,et al.  Trees and Markov Convexity , 2006, SODA '06.

[3]  David Nyiri,et al.  On embeddings of finite metric spaces , 2015, 2015 IEEE 13th International Scientific Conference on Informatics.

[4]  J. R. Lee,et al.  Embedding the diamond graph in Lp and dimension reduction in L1 , 2004, math/0407520.

[5]  M. Talagrand Embedding Subspaces of L 1 into l N 1 , 1990 .

[6]  Nikhil Srivastava,et al.  Twice-ramanujan sparsifiers , 2008, STOC '09.

[7]  James R. Lee,et al.  Dimension reduction for finite trees in l1 , 2011, SODA.

[8]  Ilan Newman,et al.  On Cut Dimension of ℓ1 Metrics and Volumes, and Related Sparsification Techniques , 2010, arXiv.org.

[9]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[10]  G. Schechtman More on embedding subspaces of $L_p$ in $l^n_r$ , 1987 .

[11]  Amit Sahai,et al.  Dimension reduction in the /spl lscr//sub 1/ norm , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[12]  Leonard J. Schulman Coding for interactive communication , 1996, IEEE Trans. Inf. Theory.

[13]  Kenneth Ward Church,et al.  Nonlinear Estimators and Tail Bounds for Dimension Reduction in l1 Using Cauchy Random Projections , 2006, J. Mach. Learn. Res..

[14]  Oded Regev,et al.  Entropy-based bounds on dimension reduction in L1 , 2011 .

[15]  Alexandr Andoni,et al.  Near Linear Lower Bound for Dimension Reduction in L1 , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[16]  J. Matousek,et al.  Open problems on embeddings of finite metric spaces , 2014 .

[17]  M. Talagrand Embedding subspaces of ₁ into ^{}₁ , 1990 .

[18]  Jirí Matousek,et al.  Low-Distortion Embeddings of Finite Metric Spaces , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[19]  J. Lindenstrauss,et al.  Approximation of zonoids by zonotopes , 1989 .

[20]  M. Habib Probabilistic methods for algorithmic discrete mathematics , 1998 .

[21]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..