Slow-light enhanced light–matter interactions with applications to gas sensing
暂无分享,去创建一个
A. Lambrecht | N. A. Mortensen | A. Lambrecht | N. Mortensen | M. N. Alam | B. Scherer | K. H. Jensen | B. Scherer | K. Jensen
[1] Quantum‐limited FM spectroscopy with a lead‐salt diode laser , 1989 .
[2] Peter Werle,et al. Quantum-limited FM-spectroscopy with a lead-salt diode laser , 1989 .
[3] K. Mogensen,et al. Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems. , 2003, Applied optics.
[4] Stefan L. Schweizer,et al. Miniature infrared gas sensors using photonic crystals , 2007, SPIE OPTO.
[5] Andreas Manz,et al. Scaling and the design of miniaturized chemical-analysis systems , 2006, Nature.
[6] Mariusz Kąkolewicz. Robert A. Reiser , John V. Dempsey (ed.), Trends and Issues in Instructional Design and Technology, (Trendy i zagadnienia projektowania i technologii kształcenia), Merrill Prentice Hall Upper Sadle River, New Jersey, Columbus, Ohio, 2002, ss. 415 , 2003 .
[7] Gang Li,et al. The HITRAN 2008 molecular spectroscopic database , 2005 .
[8] G. Khanarian. Optical properties of cyclic olefin copolymers , 2001 .
[9] S. Xiao,et al. Slow-light enhanced absorption for bio-chemical sensing applications: potential of low-contrast lossy materials , 2008, 0802.0558.
[10] David Erickson,et al. Special issue on “Optofluidics” , 2008 .
[11] Volker Ebert,et al. Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers , 2001 .
[12] S. Xiao,et al. Slow-light enhancement of Beer-Lambert-Bouguer absorption , 2007, physics/0703059.
[13] Christelle Monat,et al. Integrated optofluidics: A new river of light , 2007 .
[14] Andrew G. Glen,et al. APPL , 2001 .
[15] Johannes Ostermann,et al. Measurement of the pressure broadening coefficients of the oxygen A-band using a low cost, polarization stabilized, widely tunable vertical-cavity surface-emitting laser , 2008 .
[16] Sanshui Xiao,et al. Slow-light enhanced optical detection in liquid-infiltrated photonic crystals , 2007, 0710.3653.
[17] Brown,et al. Experimental Line Parameters of the Oxygen A Band at 760 nm. , 2000, Journal of molecular spectroscopy.
[18] Volker Ebert,et al. In situ determination of molecular oxygen concentrations in full-scale fire-suppression tests using tunable diode laser absorption spectroscopy , 2002 .
[19] K. Aung,et al. A Method for Simulating and Measuring the Concentration of Oxygen by Absorption Laser Spectroscopy , 2005 .
[20] Niels Asger Mortensen,et al. Enhanced circular dichroism via slow light in dispersive structured media , 2007, 0711.0258.
[21] M. V. Glushkov,et al. Application of a diode laser with an external resonator in high-resolution spectroscopy , 1981 .
[22] D. Psaltis,et al. Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.
[23] S. Xiao,et al. Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications , 2007, 0707.1194.
[24] L. Brown,et al. Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy , 2008 .
[25] Volker Ebert,et al. Simultaneous diode-laser-based in situ measurement of liquid water content and oxygen mole fraction in dense water mist environments. , 2006, Optics letters.