On the Number of Hamilton Cycles in Sparse Random Graphs

We prove that the number of Hamilton cycles in the random graph $G(n,p)$ is $n!p^n(1+o(1))^n$ asymptotically almost surely (a.a.s.), provided that $p\geq \frac{\ln n+\ln\ln n+\omega(1)}{n}$. Furthermore, we prove the hitting time version of this statement, showing that in the random graph process, the edge that creates a graph of minimum degree $2$ creates $(\frac{\ln n}{e})^n(1+o(1))^n$ Hamilton cycles a.a.s.

[1]  Nicholas C. Wormald,et al.  Almost All Cubic Graphs Are Hamiltonian , 1992, Random Struct. Algorithms.

[2]  B. Bollobás,et al.  An algorithm for finding hamilton paths and cycles in random graphs , 1987 .

[3]  Benny Sudakov,et al.  On the Resilience of Hamiltonicity and Optimal Packing of Hamilton Cycles in Random Graphs , 2011, SIAM J. Discret. Math..

[4]  Michael Krivelevich On the Number of Hamilton Cycles in Pseudo-Random Graphs , 2012, Electron. J. Comb..

[5]  Fred B. Schneider,et al.  A Theory of Graphs , 1993 .

[6]  Michael Krivelevich,et al.  Hamilton cycles in highly connected and expanding graphs , 2006, Comb..

[7]  Daniela Kühn,et al.  Edge‐disjoint Hamilton cycles in random graphs , 2011, Random Struct. Algorithms.

[8]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[9]  J. Komlos,et al.  First Occurrence of Hamilton Cycles in Random Graphs , 1985 .

[10]  Benny Sudakov,et al.  Dirac's theorem for random graphs , 2012, Random Struct. Algorithms.

[11]  Alan M. Frieze,et al.  On the number of hamilton cycles in a random graph , 1989, J. Graph Theory.

[12]  Michael Krivelevich,et al.  A sharp threshold for the Hamilton cycle Maker–Breaker game , 2009, Random Struct. Algorithms.

[13]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[14]  Daniela Kühn,et al.  Optimal covers with Hamilton cycles in random graphs , 2014, Comb..

[15]  Michael Krivelevich,et al.  On two Hamilton cycle problems in random graphs , 2008 .

[16]  Michael Krivelevich,et al.  On covering expander graphs by hamilton cycles , 2011, Random Struct. Algorithms.

[17]  Tibor Szabó,et al.  Positional games on random graphs , 2005 .

[18]  Geoffrey Grimmett Random Graph Theorems , 1977 .

[19]  Benny Sudakov,et al.  Sparse pseudo-random graphs are Hamiltonian , 2003, J. Graph Theory.

[20]  Michael Krivelevich,et al.  Biased games on random boards , 2012, Random Struct. Algorithms.

[21]  Wojciech Samotij,et al.  Optimal Packings of Hamilton Cycles in Sparse Random Graphs , 2011, SIAM J. Discret. Math..

[22]  Svante Janson,et al.  The Numbers of Spanning Trees, Hamilton Cycles and Perfect Matchings in a Random Graph , 1994, Combinatorics, Probability and Computing.

[23]  Michael Krivelevich,et al.  Hitting time results for Maker‐Breaker games , 2010, Random Struct. Algorithms.

[24]  Alan M. Frieze,et al.  Hamilton cycles in random subgraphs of pseudo-random graphs , 2002, Discret. Math..

[25]  Svante Janson,et al.  Random Regular Graphs: Asymptotic Distributions and Contiguity , 1995, Combinatorics, Probability and Computing.

[26]  Alan M. Frieze,et al.  On packing Hamilton cycles in ?-regular graphs , 2005, J. Comb. Theory, Ser. B.

[27]  Nicholas C. Wormald,et al.  Almost All Regular Graphs Are Hamiltonian , 1994, Random Struct. Algorithms.

[28]  Tibor Szabó,et al.  Positional games on random graphs , 2006, Random Struct. Algorithms.

[29]  Daniela Kühn,et al.  Approximate Hamilton decompositions of random graphs , 2012, Random Struct. Algorithms.