Heat Transfer Coefficient Measurements of Film-Cooling Holes With Expanded Exits

Detailed measurements of heat transfer coefficients in the nearfield of three different film-cooling holes are presented. The hole geometries investigated include a cylindrical hole and two holes with a diffuser shaped exit portion (i.e. a fan-shaped and a laidback fanshaped hole). They were tested over a range of blowing ratios M = 0.25…1.75 at an external crossflow Mach number of 0.6 and a coolant-to-mainflow density ratio of 1.85. Additionally, the effect of the internal coolant supply Mach number is addressed.Temperatures of the diabatic surface downstream of the injection location are measured by means of an infrared camera system. They are used as boundary conditions for a finite element analysis to determine surface heat fluxes and heat transfer coefficients. The superposition method is applied to evaluate the overall film-cooling performance of the hole geometries investigated.As compared to the cylindrical hole, both expanded holes show significantly lower heat transfer coefficients downstream of the injection location, particularly at high blowing ratios. The laidback fanshaped hole provides a better lateral spreading of the injected coolant than the fanshaped hole which leads to lower laterally averaged heat transfer coefficients. Coolant passage crossflow Mach number affects the flowfield of the jet being ejected from the hole and, therefore, has an important impact on film-cooling performance.Copyright © 1998 by ASME