Maximum principle for certain generalized time and space fractional diffusion equations

[1]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[2]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[3]  Sergio Vessella,et al.  Abel Integral Equations , 1990 .

[4]  Yury F. Luchko Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation , 2010, Comput. Math. Appl..

[5]  N. Varopoulos,et al.  Hardy-Littlewood theory for semigroups , 1985 .

[6]  D. Stroock An Introduction to the Theory of Large Deviations , 1984 .

[7]  Yury Luchko,et al.  Maximum principle for the generalized time-fractional diffusion equation , 2009 .

[8]  L. Evans Measure theory and fine properties of functions , 1992 .

[9]  G. H. Hardy,et al.  Some properties of fractional integrals. I. , 1928 .

[10]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[11]  Vladimir V. Uchaikin,et al.  Fractional theory for transport in disordered semiconductors , 2008 .

[12]  Yuri Luchko,et al.  Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation , 2011, 1111.2961.

[13]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[14]  T. R. Prabhakar A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .

[15]  Fernando Estrada,et al.  Theory of financial risk , 2011 .

[16]  B. West,et al.  An ant in a gurge , 2001 .

[17]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[18]  G. Pender,et al.  A non‐Fickian, particle‐tracking diffusion model based on fractional Brownian motion , 1997 .

[19]  Diego del-Castillo-Negrete,et al.  Fractional diffusion models of nonlocal transport , 2006 .

[20]  Oleg G. Bakunin Turbulence and Diffusion , 2008 .