Detecting case–control expression quantitative trait loci using locally most powerful or maximin robust rank tests

In testing genome-wide gene expression quantitative trait loci, efficiency robust statistical methods and their computational convenience are most relevant. For this purpose, we propose to use a modified locally most powerful rank test for the analysis of case-control expression data. This modified rank test statistic is computationally simple, robust for non-normally distributed expression data, and asymptotically locally most powerful. It depends on the specification of a location distribution form for data but is not sensitive to misspecifications. When such a location distribution form cannot be specified, we apply Gastwirth's maximin efficiency robust rank test to gene expression data to maximize the worst Pitman asymptotic relative efficiency among a family of location distributions. We conduct simulation studies to assess their performance and use an application to real data for illustration.

[1]  G. Abecasis,et al.  Family-based association tests for genomewide association scans. , 2007, American journal of human genetics.

[2]  Robert V. Hogg,et al.  A Two-Sample Adaptive Distribution-Free Test , 1975 .

[3]  J. Kaprio,et al.  Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. , 2003, Diabetes.

[4]  Jaroslav Hájek,et al.  ASYMPTOTICALLY MOST POWERFUL RANK-ORDER TESTS' , 1962 .

[5]  Joseph L. Gastwirth,et al.  The Use of Maximin Efficiency Robust Tests in Combining Contingency Tables and Survival Analysis , 1985 .

[6]  Pranab Kumar Sen,et al.  Within‐cluster resampling , 2001 .

[7]  Weiwen Miao,et al.  The Importance of Checking the Assumptions Underlying Statistical Analysis: Graphical Methods for Assessing Normality , 2005 .

[8]  E. Lander,et al.  Gene expression correlates of clinical prostate cancer behavior. , 2002, Cancer cell.

[9]  Harry Björkbacka,et al.  Generalized Rank Tests for Replicated Microarray Data , 2005, Statistical applications in genetics and molecular biology.

[10]  P. Sen,et al.  Chapter 3 – Elementary theory of rank tests , 1999 .

[11]  E. Leifer,et al.  Multiple Outputation: Inference for Complex Clustered Data by Averaging Analyses from Independent Data , 2003, Biometrics.

[12]  D. Hougaard,et al.  Polymorphisms in the tumor necrosis factor alpha and interleukin 1‐beta promoters with possible gene regulatory functions increase the risk of preterm birth , 2008, Acta obstetricia et gynecologica Scandinavica.

[13]  Herman Chernoff,et al.  ASYMPTOTIC NORMALITY AND EFFICIENCY OF CERTAIN NONPARAMETRIC TEST STATISTICS , 1958 .

[14]  Vivian G. Cheung,et al.  Genetic analysis of radiation-induced changes in human gene expression , 2009, Nature.

[15]  Xuming He,et al.  An Enhanced Quantile Approach for Assessing Differential Gene Expressions , 2008, Biometrics.

[16]  J. Gastwirth ON ROBUST PROCEDURES , 1966 .

[17]  Markus Neuhäuser,et al.  The Baumgartner-Wei?-Schindler test for the detection of differentially expressed genes in replicated microarray experiments , 2004, Bioinform..

[18]  J. Rosendahl,et al.  The course of genetically determined chronic pancreatitis. , 2003, JOP : Journal of the pancreas.

[19]  Joseph L. Gastwirth,et al.  Percentile Modifications of Two Sample Rank Tests , 1965 .

[20]  J. L. Hodges,et al.  The Efficiency of Some Nonparametric Competitors of the t-Test , 1956 .

[21]  P. Sen,et al.  Theory of rank tests , 1969 .

[22]  L. Wallace,et al.  A comparison of two methods of calculating GST, a genetic measure of population differentiation. , 2002, American journal of botany.

[23]  The Use of Frailty Hazard Models for Unrecognized Heterogeneity That Interacts with Treatment: Considerations of Efficiency and Power , 2002, Biometrics.

[24]  H. Mahmoud,et al.  An Efficiency Robust Nonparametric Test for Scale Change for Data From a Gamma Distribution , 1986 .

[25]  Parodi Stefano,et al.  The ManTel-haenszel procedure in epideMiological sTudies: an inTroducTion , 2007 .

[26]  L. Liang,et al.  A genome-wide association study of global gene expression , 2007, Nature Genetics.

[27]  Gang Zheng,et al.  Efficiency robust statistics for genetic linkage and association studies under genetic model uncertainty , 2010, Statistics in medicine.

[28]  Hannu Oja,et al.  Affine-invariant multivariate one-sample signed-rank tests , 1997 .

[29]  A. Birnbaum,et al.  Efficiency Robust Two-Sample Rank Tests , 1967 .

[30]  J. Gastwirth,et al.  A new two stage adaptive nonparametric test for paired differences , 2009 .

[31]  Hongyu Zhao,et al.  A semiparametric approach for marker gene selection based on gene expression data , 2005, Bioinform..

[32]  B. Freidlin,et al.  On power and efficiency robust linkage tests for affected sibs , 2000, Annals of human genetics.

[33]  Eden R Martin,et al.  Genetic association tests based on ranks (GATOR) for quantitative traits with and without censoring , 2006, Genetic epidemiology.

[34]  Charles Rotimi,et al.  Gene Copy Number Analysis for Family Data Using Semiparametric Copula Model , 2008, Bioinformatics and biology insights.

[35]  G. Abecasis,et al.  Merlin—rapid analysis of dense genetic maps using sparse gene flow trees , 2002, Nature Genetics.