A simplified Fornberg-like method for the conformal mapping of multiply connected regions-Comparisons and crowding

We present a new Fornberg-like method for the numerical conformal mapping of multiply connected regions exterior to circles to multiply connected regions exterior to smooth curves. The method is based on new, symmetric conditions for analytic extension of functions given on circular boundaries. We also briefly discuss a similar method due to Wegmann and compare some computations with both methods. Some examples of regions which exhibit crowding of the circles are also presented.

[1]  Rudolf Wegmann An iterative method for the conformal mapping of doubly connected regions , 1986 .

[2]  Paolo Luchini,et al.  Flow around simply and multiply connected bodies: a new iterative scheme for conformal mapping , 1989 .

[3]  R. Menikoff,et al.  Methods for numerical conformal mapping , 1980 .

[4]  Fast conformal mapping of an ellipse to a simply connected region , 1996 .

[5]  Thomas K. DeLillo,et al.  Numerical conformal mapping of multiply connected regions by Fornberg-like methods , 1999, Numerische Mathematik.

[6]  Bengt Fornberg,et al.  A Numerical Method for Conformal Mapping of Doubly Connected Regions , 1984 .

[7]  R. Wegmann Constructive solution of a certain class of Riemann—Hilbert problems on multiply connected circular regions , 2001 .

[8]  W. Prosnak,et al.  On an effective method for conformal mapping of multiply connected domains , 1996 .

[9]  M. Greenberg Advanced Engineering Mathematics , 1988 .

[10]  Leslie Greengard,et al.  A Method of Images for the Evaluation of Electrostatic Fields in Systems of Closely Spaced Conducting Cylinders , 1998, SIAM J. Appl. Math..

[11]  Dieter Gaier,et al.  Konstruktive Methoden der konformen Abbildung , 1964 .

[12]  H. Kober,et al.  Dictionary of conformal representations , 1957 .

[13]  P.A.A. Laura Computation of fluid motions in multiply connected domains: by W. J. Prosnak. Published by Braun, Karlsruhe (Wissenschaft Technik), 1987, 336 pp. Cost: U.S. $72.00 , 1994 .

[14]  Reiner Kühnau,et al.  Handbook of complex analysis : geometric function theory , 2002 .

[15]  A Brief Overview of Fornberg-like Methods for Conformal Mapping of Simply and Multiply Connected Regions , 2003 .

[16]  R. Wegmann Fast conformal mapping of multiply connected regions , 2001 .

[17]  B. Fornberg A Numerical Method for Conformal Mappings , 1980 .

[18]  Thomas K. DeLillo,et al.  A Fornberg-like conformal mapping method for slender regions , 1993 .

[19]  Thomas K. DeLillo,et al.  The accuracy of numerical conformal mapping methods: a survey of examples and results , 1994 .

[20]  Convergence proofs and error estimates for an iterative method for conformal mapping , 1984 .

[21]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[22]  N. D. Halsey,et al.  Potential Flow Analysis of Multielement Airfoils Using Conformal Mapping , 1979 .

[23]  Thomas K. DeLillo,et al.  Numerical Conformal Mapping Methods for Simply and Doubly Connected Regions , 1998, SIAM J. Sci. Comput..

[24]  Rudolf Wegman On Fornberg's numerical method for conformal mapping , 1986 .

[25]  F. Smithies,et al.  Singular Integral Equations , 1977 .

[26]  Thomas K. DeLillo,et al.  Numerical conformal mapping methods based on Faber series , 1997 .