Analytical solutions to non-Fickian subsurface dispersion in uniform groundwater flow

Abstract Analytical solutions are obtained by the Fourier transform technique for the one-, two-, and three-dimensional transport of a conservative solute injected instantaneously in a uniform groundwater flow. These solutions account for dispersive non-linearity caused by the heterogeneity of the hydraulic properties of aquifer systems and can be used as building blocks to construct solutions by convolution (principle of superposition) for source conditions other than slug injection. The dispersivity is assumed to vary parabolically with time and is thus constant for the entire system at any given time. Two approaches for estimating time-dependent dispersion parameters are developed for two-dimensional plumes. They both require minimal field tracer test data and, therefore, represent useful tools for assessing real-world aquifer contamination sites. The first approach requires mapped plume-area measurements at two specific times after the tracer injection. The second approach requires concentration-versus-time data from two sampling wells through which the plume passes. Detailed examples and comparisons with other procedures show that the methods presented herein are sufficiently accurate and easier to use than other available methods.

[1]  D. Freyberg,et al.  A natural gradient experiment on solute transport in a sand aquifer: 1. Approach and overview of plume movement , 1986 .

[2]  G. L. Moltyaner,et al.  Twin Lake Tracer Tests: Transverse dispersion , 1988 .

[3]  Martinus Th. Van Genuchten,et al.  Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first-order decay , 1981 .

[4]  P. R. Day Dispersion of a moving salt‐water boundary advancing through saturated sand , 1956 .

[5]  E. Eric Adams,et al.  Field study of dispersion in a heterogeneous aquifer: 1. Overview and site description , 1992 .

[6]  S. Zou,et al.  Estimation of Dispersion Parameters for Two‐Dimensional Plumes , 1993 .

[7]  Allan L. Gutjahr,et al.  Stochastic analysis of macrodispersion in a stratified aquifer , 1979 .

[8]  George F. Pinder,et al.  A Galerkin‐finite element simulation of groundwater contamination on Long Island, New York , 1973 .

[9]  L. Gelhar Stochastic Subsurface Hydrology , 1992 .

[10]  Mary P. Anderson,et al.  Using models to simulate the movement of contaminants through groundwater flow systems , 1979 .

[11]  W. G. Gray,et al.  Finite Element Simulation in Surface and Subsurface Hydrology , 1977 .

[12]  M. B. Beck,et al.  Water quality modeling: A review of the analysis of uncertainty , 1987 .

[13]  G. Dagan Flow and transport in porous formations , 1989 .

[14]  S. P. Neuman,et al.  A quasi-linear theory of non-Fickian and Fickian subsurface dispersion , 1990 .

[15]  H. Fischer Mixing in Inland and Coastal Waters , 1979 .

[16]  J. Pickens,et al.  Modeling of scale-dependent dispersion in hydrogeologic systems , 1981 .

[17]  C. Welty,et al.  A Critical Review of Data on Field-Scale Dispersion in Aquifers , 1992 .

[18]  R. Killey,et al.  Twin Lake Tracer Tests: Longitudinal dispersion , 1988 .

[19]  G. Marsily Quantitative Hydrogeology: Groundwater Hydrology for Engineers , 1986 .

[20]  John A. Cherry,et al.  Migration of contaminants in groundwater at a landfill: A case study: 1. Groundwater flow and plume delineation , 1983 .

[21]  David L. Freyberg,et al.  A natural gradient experiment on solute transport in a sand aquifer: 2. Spatial moments and the advection and dispersion of nonreactive tracers , 1986 .

[22]  C. Axness,et al.  Three‐dimensional stochastic analysis of macrodispersion in aquifers , 1983 .

[23]  Lynn W. Gelhar,et al.  Stochastic subsurface hydrology from theory to applications , 1986 .

[24]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[25]  Scott W. Tyler,et al.  An explanation of scale‐dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry , 1988 .

[26]  Mary P. Anderson,et al.  Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods , 1982 .

[27]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[28]  J. R. Philip Issues in flow and transport in heterogeneous porous media , 1986 .

[29]  K. Jensen,et al.  Large‐scale dispersion experiments in a sandy aquifer in Denmark: Observed tracer movements and numerical analyses , 1993 .

[30]  S. P. Neuman,et al.  A quasi‐linear theory of non‐Fickian and Fickian subsurface dispersion: 2. Application to anisotropic media and the Borden site , 1990 .

[31]  S. Zou,et al.  Two‐Dimensional Dispersivity Estimation Using Tracer Experiment Data , 1994 .

[32]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[33]  F. Molz,et al.  An Analysis of Dispersion in a Stratified Aquifer , 1984 .

[34]  Adrian E. Scheidegger,et al.  Statistical Hydrodynamics in Porous Media , 1954 .

[35]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[36]  G. L. Moltyaner,et al.  Twin Lake Tracer Tests: Setting, methodology, and hydraulic conductivity distribution , 1988 .

[37]  W. W. Wood,et al.  Large-Scale Natural Gradient Tracer Test in Sand and Gravel, , 1991 .

[38]  Franklin W. Schwartz,et al.  Mass transport: 1. A stochastic analysis of macroscopic dispersion , 1980 .

[39]  E. Sudicky,et al.  Field Observations of Tracer Dispersion Under Natural Flow Conditions in an Unconfined Sandy Aquifer , 1979 .

[40]  D. C. Champeney,et al.  Fourier Transforms and Their Physical Applications , 1973 .

[41]  G. Dagan Time‐dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers , 1988 .

[42]  G. Dagan Stochastic modeling of groundwater flow by unconditional and conditional probabilities: 2. The solute transport , 1982 .

[43]  G. Dagan Solute transport in heterogeneous porous formations , 1984, Journal of Fluid Mechanics.

[44]  D. LeBlanc Sewage plume in a sand and gravel aquifer , 1982 .

[45]  John A. Cherry,et al.  Migration of contaminants in groundwater at a landfill: A case study: 4. A natural-gradient dispersion test , 1983 .

[46]  L. Gelhar,et al.  Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis , 1992 .

[47]  H. Weaver Theory of Discrete and Continuous Fourier Analysis , 1989 .

[48]  M. Celia,et al.  Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts, 2, Analysis of spatial moments for a nonreactive tracer , 1991 .

[49]  APPLICATION OF A MATHEMATICAL MODEL TO THE CHARACTERIZATION OF DISPERSION EFFECTS ON GROUNDWATER QUALITY , 1979 .

[50]  S. P. Neuman Universal scaling of hydraulic conductivities and dispersivities in geologic media , 1990 .

[51]  J. Pickens,et al.  Scale‐dependent dispersion in a stratified granular aquifer , 1981 .