Nonisotropic operators arising in the method of rotations

This thesis is concerned with the mapping properties of the related objects, Mf(x,w) := suph_1J(01h) f(x-6w)dt, h>O Mrf(x) sup h1 fo,h) f(x F(t)) dt h>O and their associated singular integral operators, H and Hr respectively. Here, it := exp((log t)P) and P is a real d by d matrix whose eigenvalues have positive real part, and F R -+ R° parameterises a curve. For p in (1, max(2, (d + 1)/2)], we prove that M maps L1' to LP(L) for an optimal range of q (modulo an endpoint). For H, the same optimality is achieved for pin (1, 2]. If F(t) = (t, P(7(t))), where P is a real polynomial and 'y is a convex function, then we give sufficient conditions in order for Mr, and Hr to be bounded on L, for all p in (1, cc), with bounds independent of the coefficients of P. We also consider when these operators map L log L to weak L' locally. The same conclusions are shown to hold for the corresponding hypersurface in Rd (d > 2) under weaker hypotheses on F. We give sufficient conditions on a convex curve F in R° (d > 2) in order for NCI, and Hi-j to map L log L to weak L' locally. Finally, it is shown that if F is a piecewise linear version of a parabola then the best one can expect, in terms of Orlicz spaces locally near L', is that Mr maps L(log L)1/2 to L"°°.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  H. Carlsson,et al.  $L^p $ estimates for maximal functions and Hilbert transforms along flat convex curves in ${\mathbf{R}}^2 $ , 1986 .

[3]  George G. Lorentz,et al.  Some New Functional Spaces , 1950 .

[4]  Sharp Lorentz space estimates for rough operators , 1999, math/9912098.

[5]  Singular integral and maximal operators associated to hypersurfaces:Lp theory , 2005 .

[6]  M. Christ Weak Type (1, 1) Bounds for Rough Operators , 1988 .

[7]  Terence Tao,et al.  New bounds for Kakeya problems , 2001 .

[8]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[9]  A. Zygmund,et al.  On singular integrals with variable kernels , 1978 .

[10]  L. Maligranda Indices and interpolation , 1985 .

[11]  G. G. Lorentz,et al.  On the theory of spaces $\Lambda$. , 1951 .

[12]  Jean Bourgain,et al.  Besicovitch type maximal operators and applications to fourier analysis , 1991 .

[13]  D. Weinberg,et al.  Hilbert transforms for convex curves , 1983 .

[14]  Laura Jane Wisewell,et al.  Oscillatory integrals and curved kakeya sets , 2003 .

[15]  THE HILBERT TRANSFORM FOR CONVEX CURVES IN Rn , 1986 .

[16]  M. Christ,et al.  Maximal operators related to the Radon transform and the Calderon-Zygmund method of rotations , 1986 .

[17]  A. Carbery,et al.  Maximal functions and Hilbert transforms associated to polynomials , 1998 .

[18]  Antonio Córdoba,et al.  THE KAKEYA MAXIMAL FUNCTION AND THE SPHERICAL SUMMATION MULTIPLIERS. , 1977 .

[19]  N. Rivière Singular integrals and multiplier operators , 1971 .

[20]  James Wright,et al.  SINGULAR INTEGRAL OPERATORS ASSOCIATED TO CURVES WITH RATIONAL COMPONENTS , 2008 .

[21]  A. Nagel,et al.  On Hilbert Transforms Along Curves. II , 1976 .

[22]  A. Zygmund,et al.  On the existence of certain singular integrals , 1952 .

[23]  A. Nagel,et al.  A maximal function associated to the curve (t, t). , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[24]  H. Helson Harmonic Analysis , 1983 .

[25]  Antoni Zygmund,et al.  On the summability of double Fourier series , 1939 .

[26]  E. Stein,et al.  Problems in harmonic analysis related to curvature , 1978 .

[27]  J. Littlewood,et al.  A maximal theorem with function-theoretic applications , 1930 .

[28]  Singular maximal functions and Radon transforms near L1 , 2002, math/0205156.

[29]  Terence Tao,et al.  Recent progress on the Kakeya conjecture , 2000 .

[30]  A. Benedek,et al.  The space $L\sp{p}$, with mixed norm , 1961 .

[31]  N. Bez boundedness for the Hilbert transform and maximal operator along a class of nonconvex curves , 2006 .

[32]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[33]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[34]  M. Cowling,et al.  Inequalities for some maximal functions. II , 1985 .

[35]  A. Kamińska Some Remarks on Orlicz-Lorentz Spaces , 1990 .

[36]  T. Apostol Modular Functions and Dirichlet Series in Number Theory , 1976 .

[37]  Maximal functions associated with curves and the calderÔn-zygmund method of rotations , 1986 .

[38]  E. Stein,et al.  Differentiation in lacunary directions. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Zygmund On Singular Integrals , 1956 .

[40]  P. Gressman L p -IMPROVING PROPERTIES OF X-RAY LIKE TRANSFORMS , 2006 .

[41]  T. Wolff,et al.  An improved bound for Kakeya type maximal functions , 1995 .

[42]  W. Hackbusch Singular Integral Equations , 1995 .

[43]  Negative results for Nikodym maximal functions and related oscillatory integrals in curved space , 1999, math/9912202.

[44]  The singular integrals related to the calderón-zygmund method of rotations , 1988 .

[45]  Concerning Nikodym-type sets in 3-dimensional curved spaces , 1999, math/9912203.

[46]  R. Fefferman On an operator arising in the Calderón-Zygmund method of rotations and the Bramble-Hilbert lemma. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[47]  E. Stein,et al.  A remark on singular Calderón-Zygmund theory , 1987 .

[48]  James Wright,et al.  Singular Integrals and Maximal Functions Associated to Surfaces of Revolution , 1996 .

[49]  Laura Wisewell Kakeya sets of curves , 2005, math/0502102.

[50]  C. Bennett,et al.  Interpolation of operators , 1987 .

[51]  F. Smithies,et al.  Convex Functions and Orlicz Spaces , 1962, The Mathematical Gazette.

[52]  James Wright,et al.  An oscillatory integral estimate associated to rational phases , 2003 .

[53]  W. Luxemburg,et al.  BANACH FUNCTION SPACES , 2011 .

[54]  E. Fabes,et al.  Singular integrals with mixed homogeneity , 1966 .

[55]  Comparison of Orlicz-Lorentz spaces , 1991, math/9201221.

[56]  Ricardo G. Durán,et al.  On Polynomial Approximation in Sobolev Spaces , 1983 .

[57]  N. Wiener The ergodic theorem , 1939 .