Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation.

Organo-halide lead perovskites are revolutionizing the photovoltaic scenario, with efficiencies exceeding 15%. The orientational dynamics disorder of the methylammonium cations (MA) is one of the most peculiar features of these materials. Here, we perform ab initio molecular dynamics simulations and IR spectroscopic measurements on lead halide hybrid perovskites to elucidate the rotational motion of the MA cations in these systems and its effects on the structural and electronic properties of hybrid perovskites. In the investigated time frame, the MA cations are found to rotate within the inorganic framework on a timescale of a few ps. A variation of ±0.1 to 0.2 eV of the electronic properties with the ion dynamics is found, which increases upon increasing the temperature.

[1]  M. Gorgoi,et al.  Electronic Structure of TiO2/CH3NH3PbI3 Perovskite Solar Cell Interfaces. , 2014, The journal of physical chemistry letters.

[2]  Hiroshi Suga,et al.  Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II) , 1990 .

[3]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[4]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[5]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[6]  Giuseppe Gigli,et al.  MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties , 2013 .

[7]  John E. Anthony,et al.  Electronic interactions and thermal disorder in molecular crystals containing cofacial pentacene units , 2005 .

[8]  Ralph Gebauer,et al.  Simulating Dye-Sensitized TiO2 Heterointerfaces in Explicit Solvent: Absorption Spectra, Energy Levels, and Dye Desorption , 2011 .

[9]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[10]  M. White,et al.  Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation , 1990 .

[11]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[13]  Ian P. Swainson,et al.  Phase transitions in the perovskite methylammonium lead bromide, CH3ND3PbBr3 , 2003 .

[14]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[15]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[16]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[17]  Aron Walsh,et al.  Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles , 2013, 1309.4215.

[18]  Xiaohao Yang,et al.  Structure of methylammonium lead iodide within mesoporous titanium dioxide: active material in high-performance perovskite solar cells. , 2014, Nano letters.

[19]  E. Meijer,et al.  Density-functional theory-based molecular simulation study of liquid methanol. , 2004, The Journal of chemical physics.

[20]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[21]  J. Even,et al.  DFT and k · p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells , 2014 .

[22]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[23]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[24]  A. Cho 2012 election. For once, science is an issue in race for a seat in Congress. , 2012, Science.

[25]  J. Even,et al.  Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications , 2013 .

[26]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[27]  M. Gaigeot Theoretical spectroscopy of floppy peptides at room temperature. A DFTMD perspective: gas and aqueous phase. , 2010, Physical chemistry chemical physics : PCCP.

[28]  I. Swainson,et al.  Orientational ordering, tilting and lone-pair activity in the perovskite methylammonium tin bromide, CH3NH3SnBr3. , 2010, Acta crystallographica. Section B, Structural science.

[29]  O. Knop,et al.  Cation rotation in methylammonium lead halides , 1985 .

[30]  K. Asai,et al.  Electronic structures of lead iodide based low-dimensional crystals , 2003 .

[31]  Michael Grätzel,et al.  First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications , 2013 .

[32]  H. Snaith,et al.  The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment. , 2014, The journal of physical chemistry letters.

[33]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[34]  S. Shinkai,et al.  Vibrational spectrum of C 60 sin the p-tert-butylcalix[8]arene(1:1) C 60 scomplex , 1997 .

[35]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[36]  Ling-yi Huang,et al.  Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl 3 , CsSnBr 3 , and CsSnI 3 , 2013 .

[37]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[38]  Alex K.-Y. Jen,et al.  High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. , 2013, Nano letters.

[39]  I. Swainson,et al.  The ordered phase of methylammonium lead chloride CH3ND3PbCl3 , 2005 .

[40]  David B. Mitzi,et al.  Solution-processed inorganic semiconductors , 2004 .

[41]  Alessandro Troisi,et al.  Dynamics of the intermolecular transfer integral in crystalline organic semiconductors. , 2005, The journal of physical chemistry. A.

[42]  Chang Yoon,et al.  Linear Network Model of Gene Regulation for the Yeast Cell Cycle , 2004 .

[43]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[44]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[45]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[46]  Henry J. Snaith,et al.  Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance , 2013, Nature.

[47]  C. H. Park,et al.  First-Principles Study of the Structural and the Electronic Properties of the Lead-Halide-Based Inorganic-Organic perovskites (CH3NH3)PbX3 and CsPbX3 (X = Cl, Br, I) , 2004 .