Akkommodation und Presbyopie

ZusammenfassungAkkommodation ist eine dynamische Brechkraftänderung des Auges. Nach der heute größtenteils akzeptierten und im Wesentlichen experimentell bestätigten Theorie von Helmholtz beruht sie auf dem Nachlassen der Spannung der Zonulafasern bei Kontraktion des Ziliarmuskels und der Formveränderung der Linse durch die elastische Linsenkapsel. Die Fähigkeit zur Akkomodation geht mit zunehmendem Lebensalter allmählich verloren (Presbyopie). Aufgrund der Schwierigkeiten bei der Untersuchung des Akkommodationsapparats in vivo wurden viele, sich teilweise widersprechende Theorien zum Mechanismus der Akkommodation und der Presbyopieentstehung entwickelt. In den letzten Jahren haben experimentelle Studien das Wissen über den Akkommodationsapparat bedeutend erweitert und legen eine multifaktorielle Ätiologie der Presbyopie nahe. Besseres Verständnis der Physiologie von Akkommodation und Presbyopie kann zur Entwicklung von effektiven Therapiemethoden beitragen.AbstractAccommodation is a dynamic change in the dioptric power of the eye. According to the widely accepted and experimentally confirmed theory of Helmholtz, it is achieved by release of zonular tension with contraction of the ciliary muscle and consecutive modelling of the shape of the crystalline lens by the elastic lens capsule. The ability to accommodate is gradually lost with age (presbyopia). Because of difficulties in examining the accommodative apparatus in vivo, many theories, in part contradictory, about the mechanism of accommodation and the origin of presbyopia have been developed. In recent years experimental studies have greatly increased the knowledge about the acommodative apparatus and suggest a multifactorial aetiology of presbyopia. A better understanding of the physiology of accommodation and presbyopia can contribute to the development of effective treatments.

[1]  Arthur H. Keeney,et al.  Dictionary of ophthalmic optics , 1995 .

[2]  R. Fisher Elastic constants of the human lens capsule , 1969, The Journal of physiology.

[3]  Stephen E. Morse,et al.  The effect of perceived distance on accomodation under binocular steady-state conditions , 1995, Vision Research.

[4]  J F Koretz,et al.  How the human eye focuses. , 1988, Scientific American.

[5]  M. Croft,et al.  Ultrasound Biomicroscopy of the Aging Rhesus Monkey Ciliary Region , 2001, Optometry and vision science : official publication of the American Academy of Optometry.

[6]  J. Bühren,et al.  Anwendung der Wellenfrontanalyse in Klinik und Wissenschaft , 2007, Der Ophthalmologe.

[7]  T. Olsen,et al.  Biomechanical characteristics of the human anterior lens capsule in relation to age. , 1997, Investigative ophthalmology & visual science.

[8]  R. Weale,et al.  Presbyopia - a maverick of human aging. , 1995, Archives of gerontology and geriatrics.

[9]  R. Fisher The elastic constants of the human lens , 1971, The Journal of physiology.

[10]  P. Kaufman,et al.  Age-related loss of morphologic responses to pilocarpine in rhesus monkey ciliary muscle. , 1988, Archives of ophthalmology.

[11]  J S Wolffsohn,et al.  Sympathetic control of accommodation: evidence for inter‐subject variation , 2002, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[12]  R F Fisher,et al.  Presbyopia and the changes with age in the human crystalline lens , 1973, The Journal of physiology.

[13]  L M Smithline Accommodative response to blur. , 1974, Journal of the Optical Society of America.

[14]  D J Coleman,et al.  Unified model for accommodative mechanism. , 1970, American journal of ophthalmology.

[15]  Lisa A. Ostrin,et al.  Accommodative changes in lens diameter in rhesus monkeys. , 2006, Investigative ophthalmology & visual science.

[16]  W Neil Charman,et al.  Thomas Young's contribution to visual optics: the Bakerian Lecture "on the mechanism of the eye". , 2010, Journal of vision.

[17]  H. Weeber,et al.  Stiffness gradient in the crystalline lens , 2007, Graefe's Archive for Clinical and Experimental Ophthalmology.

[18]  T. D. Black,et al.  The mechanism of accommodation and presbyopia in the primate , 1995 .

[19]  Jody C. Culham,et al.  fMRI reveals a preference for near viewing in the human parieto-occipital cortex , 2007, NeuroImage.

[20]  Henk A Weeber,et al.  Dynamic mechanical properties of human lenses. , 2005, Experimental eye research.

[21]  Christopher W. Tyler,et al.  Component analysis of BOLD response , 2004 .

[22]  M. Dubbelman,et al.  The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox , 2001, Vision Research.

[23]  P. Kaufman,et al.  In vivo videography of the rhesus monkey accommodative apparatus. Age-related loss of ciliary muscle response to central stimulation. , 1990, Archives of ophthalmology.

[24]  P. Kaufman,et al.  Age changes in rhesus monkey ciliary muscle: light and electron microscopy. , 1988, Experimental eye research.

[25]  R. Truscott,et al.  Presbyopia: The First Stage of Nuclear Cataract? , 2006, Ophthalmic Research.

[26]  Adrian Glasser,et al.  The zonula, lens, and circumlental space in the normal iridectomized rhesus monkey eye. , 2006, Investigative ophthalmology & visual science.

[27]  J. Wolffsohn,et al.  Sympathetic innervation of ciliary muscle and oculomotor function in emmetropic and myopic young adults , 2005, Vision Research.

[28]  Adrian Glasser,et al.  Dynamic accommodation in rhesus monkeys , 2002, Vision Research.

[29]  R. Weale On potential causes of presbyopia. , 1999, Vision research.

[30]  Coleman Dj,et al.  On the hydraulic suspension theory of accommodation. , 1986 .

[31]  R. Weale,et al.  Presbyopia toward the end of the 20th century. , 1989, Survey of ophthalmology.

[32]  P. Kaufman,et al.  The mechanism of accommodation in primates. , 1999, Ophthalmology.

[33]  T Kohnen,et al.  [Application of wavefront analysis in clinical and scientific settings. From irregular astigmatism to aberrations of a higher order--Part I: Basic principles]. , 2007, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[34]  Scott R Sponheim,et al.  Functional neuroanatomy of the human near/far response to blur cues: eye‐lens accommodation/vergence to point targets varying in depth , 2004, The European journal of neuroscience.

[35]  Thomas Young,et al.  On the Mechanism of the Eye , 1801 .

[36]  C. McCulloch The zonule of Zinn: its origin, course, and insertion, and its relation to neighboring structures. , 1954, Transactions of the American Ophthalmological Society.

[37]  Jane F. Koretz,et al.  Modeling age-related accomodative loss in the human eye , 1986 .

[38]  P. Kaufman,et al.  Ciliary muscle muscarinic binding sites, choline acetyltransferase, and acetylcholinesterase in aging rhesus monkeys. , 1990, Investigative ophthalmology & visual science.

[39]  Wolfgang Drexler,et al.  Biometric investigation of changes in the anterior eye segment during accommodation , 1997, Vision Research.

[40]  Robert J. Lee,et al.  THE MECHANISM OF ACCOMMODATION. , 1895 .

[41]  M. Costello,et al.  Morphology of the normal human lens. , 1996, Investigative ophthalmology & visual science.

[42]  D. Worthen,et al.  Histology of the Human Eye. , 1972 .

[43]  A. Cramer,et al.  Het accommodatievermogen der oogen : physiologisch toegelicht , 1853 .

[44]  M. Campbell,et al.  Presbyopia and the optical changes in the human crystalline lens with age , 1998, Vision Research.

[45]  N. Brown,et al.  The change in lens curvature with age. , 1974, Experimental eye research.

[46]  R. Fisher Is the vitreous necessary for accommodation in man? , 1983, The British journal of ophthalmology.

[47]  R. Schachar Theoretical basis for the scleral expansion band procedure for surgical reversal of presbyopia [SRP] , 2000 .

[48]  J. Rohen,et al.  Posterior attachment of ciliary muscle in young, accommodating old, presbyopic monkeys. , 1991, Investigative ophthalmology & visual science.

[49]  P. Kaufman,et al.  Age-related loss of ciliary muscle mobility in the rhesus monkey. Role of the choroid. , 1992, Archives of ophthalmology.

[50]  Alexander Duane,et al.  NORMAL VALUES OF THE ACCOMMODATION AT ALL AGES , 1912 .

[51]  H. Howland,et al.  Accommodative state of young adults using reading spectacles , 2005, Vision Research.

[52]  M. Campbell,et al.  Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia , 1999, Vision Research.

[53]  Johannes W. Rohen,et al.  Age-related changes of the human ciliary muscle. A quantitative morphometric study , 1992, Mechanisms of Ageing and Development.

[54]  P. Kaufman,et al.  Parasympathetic denervation of the ciliary muscle following panretinal photocoagulation. , 1991, Current eye research.

[55]  Austin Roorda,et al.  A population study on changes in wave aberrations with accommodation. , 2004, Journal of vision.

[56]  D A Atchison,et al.  Subject instructions and methods of target presentation in accommodation research. , 1994, Investigative ophthalmology & visual science.

[57]  E. Luetjen Histometrische Untersuchungen über den Ciliarmuskel der Primaten , 1966, Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie.

[58]  J. Koretz,et al.  Presbyopia: An animal model and experimental approaches for the study of the mechanism of accommodation and ocular ageing , 1987, Eye.

[59]  P. Farnsworth,et al.  Three-dimensional architecture of the suspensory apparatus of the lens of the Rhesus monkey. , 1977, Experimental eye research.

[60]  R. Truscott Age-Related Nuclear Cataract: A Lens Transport Problem , 2000, Ophthalmic Research.

[61]  P. Kaufman,et al.  Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye. , 2006, Investigative ophthalmology & visual science.

[62]  Christopher A. Cook,et al.  The zones of discontinuity in the human lens: Development and distribution with age , 1994, Vision Research.

[63]  Nobuyuki Hiruma,et al.  Characteristics of accommodation toward apparent depth , 1999, Vision Research.

[64]  J. Semmlow,et al.  High resolution MRI study of circumlental space in the aging eye. , 2000, Journal of refractive surgery.

[65]  A. S. Vilupuru,et al.  The relationship between refractive and biometric changes during Edinger-Westphal stimulated accommodation in rhesus monkeys. , 2003, Experimental Eye Research.

[66]  H. Pau,et al.  The increasing sclerosis of the human lens with age and its relevance to accommodation and presbyopia , 2004, Graefe's Archive for Clinical and Experimental Ophthalmology.

[67]  Schachar Ra,et al.  Cause and treatment of presbyopia with a method for increasing the amplitude of accommodation. , 1992 .

[68]  J L Semmlow,et al.  Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. , 1999, Investigative ophthalmology & visual science.

[69]  A. Glasser,et al.  Edinger--Westphal stimulated accommodative dynamics in anesthetized, middle-aged rhesus monkeys. , 2008, Experimental eye research.

[70]  Christopher A. Cook,et al.  Aging of the human crystalline lens and anterior segment , 1994, Vision Research.

[71]  P. Kaufman,et al.  Age does not affect contractile responses of the isolated rhesus monkey ciliary muscle to muscarinic agonists. , 1993, Current eye research.

[72]  P. Farnsworth,et al.  Anterior zonular shifts with age. , 1979, Experimental Eye Research.

[73]  Fisher Rf The vitreous and lens in accommodation. , 1982 .

[74]  H. Helmholtz,et al.  Ueber die Accommodation des Auges , 1855, Archiv für Ophthalmologie.

[75]  Philip B. Kruger,et al.  Stimuli for accommodation: Blur, chromatic aberration and size , 1986, Vision Research.

[76]  J. Rohen,et al.  Scanning electron microscopic studies of the zonular apparatus in human and monkey eyes. , 1979, Investigative ophthalmology & visual science.

[77]  R. Truscott,et al.  Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? , 2004, Molecular vision.