Flow Sensing with Pressure Sensor-Based Artificial Lateral Lines: from the Laboratory to the Field. Veevoolu tajumine rõhusensoritel baseeruvate küljejooneanduritega: laborist välikatseteni

[1]  R. C. Pankhurst,et al.  The Measurement of Air Flow , 1928, Nature.

[2]  K Hilding Beij Aircraft Speed Instruments , 1933 .

[3]  A. H. Glaser The Pitot cylinder as a static pressure probe in turbulent flow , 1952 .

[4]  S. Dijkgraaf THE FUNCTIONING and SIGNIFICANCE OF THE LATERAL‐LINE ORGANS , 1963, Biological reviews of the Cambridge Philosophical Society.

[5]  G. Cavagna,et al.  Pressure distribution on the body surface of swimming fish. , 1974, The Journal of experimental biology.

[6]  T. Pitcher,et al.  A blind fish can school. , 1976, Science.

[7]  D. Lenschow,et al.  The Use of Pressure Fluctuations on the Nose of an Aircraft for Measuring Air Motion , 1983 .

[8]  J. Anderson,et al.  Fundamentals of Aerodynamics , 1984 .

[9]  T. M. Hammond,et al.  Field and flume comparisons of the modified and standard (savonius-rotor) Aanderaa self-recording current meters , 1986 .

[10]  J. Gray,et al.  Mechanical Factors in the Excitation of the Lateral Lines of Fishes , 1988 .

[11]  Michael S. Triantafyllou,et al.  Efficient Foil Propulsion Through Vortex Control , 1996 .

[12]  J. Montgomery,et al.  The lateral line can mediate rheotaxis in fish , 1997, Nature.

[13]  S. D. Fleischer,et al.  Demonstration of a vision-based dead-reckoning system for navigation of an underwater vehicle , 1998, IEEE Oceanic Engineering Society. OCEANS'98. Conference Proceedings (Cat. No.98CH36259).

[14]  Hanumant Singh,et al.  Towards Precision Robotic Maneuvering, Survey, and Manipulation in Unstructured Undersea Environments , 1998 .

[15]  Timothy L. Crawford,et al.  THE BAT-PROBE: THE ULTIMATE TOOL TO MEASURE TURBULENCE FROM ANY KIND OF AIRCRAFT (OR SAILPLANE) , 1999 .

[16]  N. Lamouroux,et al.  Fish habitat preferences in large streams of southern France , 1999 .

[17]  Michael Sfakiotakis,et al.  Review of fish swimming modes for aquatic locomotion , 1999 .

[18]  S. M. Smith,et al.  Enhancement of the inertial navigation system for the Morpheus autonomous underwater vehicles , 2001 .

[19]  S. Coombs,et al.  The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. , 2001, The Journal of experimental biology.

[20]  Jack Chen,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering Design and Fabrication of Artificial Lateral Line Flow Sensors 1. Underwater Flow Sensing , 2022 .

[21]  M. Dijkstra,et al.  Fabrication of arrays of artificial hairs for complex flow pattern recognition , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).

[22]  Pere Ridao,et al.  Vision-based localization of an underwater robot in a structured environment , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[23]  E. Hassan,et al.  Studies on the effects of Ca2++ and Co++ on the swimming behavior of the blind Mexican cave fish , 1992, Journal of Comparative Physiology A.

[24]  David M. Fratantoni,et al.  UNDERWATER GLIDERS FOR OCEAN RESEARCH , 2004 .

[25]  Bjørn Jalving,et al.  DVL Velocity Aiding in the HUGIN 1000 Integrated Inertial Navigation System , 2004 .

[26]  H. Thomas,et al.  Performance of an AUV navigation system at Arctic latitudes , 2005, IEEE Journal of Oceanic Engineering.

[27]  Wolfram Burgard,et al.  Robust vision-based localization by combining an image-retrieval system with Monte Carlo localization , 2005, IEEE Transactions on Robotics.

[28]  Douglas L. Jones,et al.  Distant touch hydrodynamic imaging with an artificial lateral line , 2006, Proceedings of the National Academy of Sciences.

[29]  J. Engel,et al.  DEVELOPMENT AND CHARACTERIZATION OF HIGH-SENSITIVITY BIOINSPIRED ARTIFICIAL HAIRCELL SENSOR , 2006 .

[30]  Phillip J. Wyss,et al.  An Airborne and Wind Tunnel Evaluation of a Wind Turbulence Measurement System for Aircraft-Based Flux Measurements* , 2006 .

[31]  N. Jones,et al.  Evaluation of AUV‐based ADCP measurements , 2006 .

[32]  J. Engel,et al.  Artificial Lateral Line And Hydrodynamic Object Tracking , 2006, 19th IEEE International Conference on Micro Electro Mechanical Systems.

[33]  Douglas L. Jones,et al.  Multisensor Processing Algorithms for Underwater Dipole Localization and Tracking Using MEMS Artificial Lateral-Line Sensors , 2006, EURASIP J. Adv. Signal Process..

[34]  J. Crimaldi,et al.  The accuracy of acoustic Doppler velocimetry measurements in turbulent boundary layer flows over a smooth bed , 2007 .

[35]  J. Engel,et al.  From artificial hair cell sensor to artificial lateral line system: Development and application , 2007, 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS).

[36]  Takuma Suzuki,et al.  Noise of Acoustic Doppler Velocimeter Data in Bubbly Flows , 2007 .

[37]  A. Roy,et al.  Measuring water velocity in highly turbulent flows: field tests of an electromagnetic current meter (ECM) and an acoustic Doppler velocimeter (ADV) , 2007 .

[38]  M. Kabacinski,et al.  Numerical and experimental research on new cross-sections of averaging Pitot tubes , 2008 .

[39]  Einar Berglund,et al.  Doppler water-track aided inertial navigation for autonomous underwater vehicle , 2009, OCEANS 2009-EUROPE.

[40]  Franz S. Hover,et al.  Development and Application of Distributed MEMS Pressure Sensor Array for AUV object Avoidance , 2009 .

[41]  Shane P. Windsor,et al.  The influence of viscous hydrodynamics on the fish lateral-line system. , 2009, Integrative and comparative biology.

[42]  G. Krijnen,et al.  Engineering of biomimetic hair-flow sensor arrays dedicated to high-resolution flow field measurements , 2010, 2010 IEEE Sensors.

[43]  D. Coughlin,et al.  Rainbow trout Oncorhynchus mykiss consume less energy when swimming near obstructions. , 2010, Journal of fish biology.

[44]  Douglas L. Jones,et al.  Artificial lateral line with biomimetic neuromasts to emulate fish sensing , 2010, Bioinspiration & biomimetics.

[45]  Vicente I Fernandez,et al.  Performance analysis for lateral-line-inspired sensor arrays , 2011 .

[46]  Erik Maehle,et al.  Sonar-based FastSLAM in an underwater environment using walls as features , 2011, 2011 15th International Conference on Advanced Robotics (ICAR).

[47]  Maarja Kruusmaa,et al.  Swimming speed control and on-board flow sensing of an artificial trout , 2011, 2011 IEEE International Conference on Robotics and Automation.

[48]  Jeffrey H. Lang,et al.  Lateral-line inspired sensor arrays for navigation and object identification , 2011 .

[49]  H. Bleckmann,et al.  Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals , 2011, Beilstein journal of nanotechnology.

[50]  Douglas L. Jones,et al.  Flow Vision for Autonomous Underwater Vehicles via an Artificial Lateral Line , 2011, EURASIP J. Adv. Signal Process..

[51]  Xiaobo Tan,et al.  Underwater source localization using an IPMC-based artificial lateral line , 2011, 2011 IEEE International Conference on Robotics and Automation.

[52]  M. T. Ferreira,et al.  Effects of water velocity and turbulence on the behaviour of Iberian barbel (Luciobarbus bocagei, Steindachner 1864) in an experimental pool‐type fishway , 2011 .

[53]  M. T. Ferreira,et al.  Ecohydraulics of pool-type fishways: Getting past the barriers , 2012 .

[54]  Michael S. Triantafyllou,et al.  A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater sensing , 2012 .

[55]  Xiaobo Tan,et al.  An artificial lateral line system using IPMC sensor arrays , 2012 .

[56]  Maarja Kruusmaa,et al.  Sensing oscillations in unsteady flow for better robotic swimming efficiency , 2012, 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[57]  M. Triantafyllou,et al.  Bio-inspired pressure sensing for active yaw control of underwater vehicles , 2012, 2012 Oceans.

[58]  Maarja Kruusmaa,et al.  Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows , 2012, Bioinspiration & biomimetics.

[59]  Maarja Kruusmaa,et al.  Against the flow: A Braitenberg controller for a fish robot , 2012, 2012 IEEE International Conference on Robotics and Automation.

[60]  Maarja Kruusmaa,et al.  Pressure Sensitive Lateral Line for Underwater Robot , 2013 .

[61]  Maarja Kruusmaa,et al.  Flow-relative control of an underwater robot , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[62]  M. McHenry,et al.  The Biophysics of the Fish Lateral Line , 2013 .

[63]  Eduard Vidal,et al.  Sparus II, design of a lightweight hovering AUV , 2013 .

[64]  M. T. Ferreira,et al.  Use of electromyogram telemetry to assess the behavior of the Iberian barbel (Luciobarbus bocagei Steindachner, 1864) in a pool-type fishway , 2013 .

[65]  Paolo Fiorini,et al.  Self-motion effects on hydrodynamic pressure sensing: part I. Forward–backward motion , 2013, Bioinspiration & biomimetics.

[66]  Lily D. Chambers,et al.  A fish perspective: detecting flow features while moving using an artificial lateral line in steady and unsteady flow , 2014, Journal of The Royal Society Interface.

[67]  Sajad Saeedi,et al.  AUV Navigation and Localization: A Review , 2014, IEEE Journal of Oceanic Engineering.

[68]  Guangming Xie,et al.  Speed estimation for robotic fish based on pressure sensor , 2014, The 26th Chinese Control and Decision Conference (2014 CCDC).

[69]  Maarja Kruusmaa,et al.  Design principle of a biomimetic underwater robot U-CAT , 2014, 2014 Oceans - St. John's.

[70]  Guangming Xie,et al.  Sensing the neighboring robot by the artificial lateral line of a bio-inspired robotic fish , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[71]  Hong Lei,et al.  Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line , 2015, Bioinspiration & biomimetics.

[72]  Guangming Xie,et al.  Speed estimation for robotic fish using onboard artificial lateral line and inertial measurement unit , 2015, 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[73]  Maarja Kruusmaa,et al.  Flow-Sensitive Robotic Fish: From Concept to Experiments. Voolutundlik robotkala: ideest katsetusteni , 2015 .

[74]  Maarja Kruusmaa,et al.  Current velocity estimation using a lateral line probe , 2015 .

[75]  Joni-Kristian Kämäräinen,et al.  Flow feature extraction for underwater robot localization: Preliminary results , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[76]  Joni-Kristian Kämäräinen,et al.  Joint Estimation of Bulk Flow Velocity and Angle Using a Lateral Line Probe , 2016, IEEE Transactions on Instrumentation and Measurement.

[77]  Guangming Xie,et al.  Speed evaluation of a freely swimming robotic fish with an artificial lateral line , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[78]  G. Lauder,et al.  Fish optimize sensing and respiration during undulatory swimming , 2016, Nature Communications.

[79]  Maarja Kruusmaa,et al.  Underwater vehicle speedometry using differential pressure sensors: Preliminary results , 2016, 2016 IEEE/OES Autonomous Underwater Vehicles (AUV).

[80]  J. Kämäräinen,et al.  Design and application of a fish-shaped lateral line probe for flow measurement. , 2016, The Review of scientific instruments.

[81]  Erin M. Fischell,et al.  Design of a general autonomy payload for low-cost AUV R&D , 2016, 2016 IEEE/OES Autonomous Underwater Vehicles (AUV).

[82]  Pere Ridao,et al.  Toward Autonomous Exploration in Confined Underwater Environments , 2016, J. Field Robotics.

[83]  Maarja Kruusmaa,et al.  Map-based localization in structured underwater environment using simulated hydrodynamic maps and an artificial lateral line , 2017, 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[84]  G. Xie,et al.  Artificial lateral line based local sensing between two adjacent robotic fish , 2017, Bioinspiration & biomimetics.

[85]  Kamran Mohseni,et al.  A Pressure Sensory System Inspired by the Fish Lateral Line: Hydrodynamic Force Estimation and Wall Detection , 2017, IEEE Journal of Oceanic Engineering.

[86]  Ke Chen,et al.  Estimation of Flow Turbulence Metrics With a Lateral Line Probe and Regression , 2017, IEEE Transactions on Instrumentation and Measurement.

[87]  Kamran Mohseni,et al.  An artificial fish lateral line sensory system composed of modular pressure sensor blocks , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[88]  Kamran Mohseni,et al.  Design of a 3-D Printed, Modular Lateral Line Sensory System for Hydrodynamic Force Estimation , 2017 .

[89]  Maarja Kruusmaa,et al.  Underwater map-based localization using flow features , 2017, Auton. Robots.

[90]  Ana L. Quaresma,et al.  Passage performance of two cyprinids with different ecological traits in a fishway with distinct vertical slot configurations , 2017 .

[91]  Yong Zhang,et al.  A fish-shaped minimal prototype of lateral line system based on pressure sensing , 2017, 2017 IEEE International Conference on Mechatronics and Automation (ICMA).

[92]  Jianhua Wang,et al.  Hydrodynamic analysis with an artificial lateral line of robotic fish , 2017, 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA).

[93]  Maarja Kruusmaa,et al.  Flow velocity estimation using a fish-shaped lateral line probe with product-moment correlation features and a neural network , 2017 .

[94]  M. T. Ferreira,et al.  Spatial preferences of Iberian barbel in a vertical slot fishway under variable hydrodynamic scenarios , 2018, Ecological Engineering.

[95]  Maarja Kruusmaa,et al.  3D modelling of non-uniform and turbulent flow in vertical slot fishways , 2018, Environ. Model. Softw..

[96]  Ying Liu,et al.  Underwater Positioning Based on an Artificial Lateral Line and a Generalized Regression Neural Network , 2018, Journal of Bionic Engineering.

[97]  Reza Malekian,et al.  Research on Flow Field Perception Based on Artificial Lateral Line Sensor System , 2018, Sensors.

[98]  Richard Schwarzenberger,et al.  Man-made flows from a fish’s perspective: autonomous classification of turbulent fishway flows with field data collected using an artificial lateral line , 2018, Bioinspiration & biomimetics.

[99]  M. Kruusmaa,et al.  Differential Pressure Sensors for Underwater Speedometry in Variable Velocity and Acceleration Conditions , 2018, IEEE Journal of Oceanic Engineering.

[100]  Martin Schletterer,et al.  Hydroacoustic and Pressure Turbulence Analysis for the Assessment of Fish Presence and Behavior Upstream of a Vertical Trash Rack at a Run-of-River Hydropower Plant , 2018, Applied Sciences.

[101]  Maarja Kruusmaa,et al.  Map-based localization and loop-closure detection from a moving underwater platform using flow features , 2018, Auton. Robots.

[102]  M. Kruusmaa,et al.  Hydraulics of Vertical-Slot Fishways: Nonuniform Profiles , 2019, Journal of Hydraulic Engineering.

[103]  Dongbing Gu,et al.  Autonomous Optimization of Swimming Gait in a Fish Robot With Multiple Onboard Sensors , 2019, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[104]  A. Pinheiro,et al.  Fish under pressure: Examining behavioural responses of Iberian barbel under simulated hydropeaking with instream structures , 2019, PloS one.

[105]  D. Raible,et al.  The Mechanosensory Lateral Line System , 2020 .

[106]  D. S. B A R R E T T,et al.  Drag reduction in fish-like locomotion , 2022 .