Adding functionality to microchips by wafer post-processing

The traditional microchip processes, stores and communicates electrical information. Here we review an emerging class of microchips that have additional functionality through extra integrated components in the chip. In the final manufacturing stage, layers are added on top of the chip, with a specific property such as sensitivity to ionizing radiation. This paper reviews the technology underlying these monolithic microsystems, including the incorporation of new materials, the unconventional application of photoresist layers, and low-temperature technology for suspended membranes. The manufacturing of exemplary microsystems, such as the active pixel sensor and liquid-crystalon-silicon, is detailed. A new class of fully integrated radiation imaging systems is now technologically within reach.

[1]  J. Scholvin,et al.  A through-wafer interconnect in silicon for RFICs , 2004, IEEE Transactions on Electron Devices.

[2]  M. Madou Fundamentals of microfabrication , 1997 .

[3]  James D. Meindl,et al.  Interconnect Opportunities for Gigascale Integration , 2002, IEEE Micro.

[4]  Lester J. Kozlowski,et al.  256*256 hybrid HgCdTe infrared focal plane arrays , 1991 .

[5]  R. Feng,et al.  Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings , 2002 .

[6]  M. Koyanagi,et al.  Breakdown Yield and Lifetime of Thin Gate Oxides in CMOS Processing , 1989 .

[7]  Haiqing Lin,et al.  An 852/spl times/600 pixel OLED-on-silicon color microdisplay chip using CMOS sub-threshold-voltage-scaling current driver , 2002 .

[8]  B. Sammakia,et al.  Study of assembly processes for liquid crystal on silicon (LCoS) microdisplays , 2004, IEEE Transactions on Components and Packaging Technologies.

[9]  C. Lokhande,et al.  Chemical deposition method for metal chalcogenide thin films , 2000 .

[10]  Albert H. Titus,et al.  2D silicon/ferroelectric liquid crystal spatial light modulators , 1995, IEEE Micro.

[11]  J. Bustillo,et al.  Process technology for the modular integration of CMOS and polysilicon microstructures , 1994 .

[12]  Jurriaan Schmitz,et al.  The readout of a GEM or Micromegas-equipped TPC by means of the Medipix2 CMOS sensor as direct anode , 2004 .

[13]  James D. Plummer,et al.  Silicon VLSI Technology , 2008 .

[14]  Robert E. Higashi,et al.  Monolithic two-dimensional arrays of micromachined microstructures for infrared applications , 1998, Proc. IEEE.

[15]  Claude Colledani,et al.  A monolithic active pixel sensor for charged particle tracking and imaging using standard VLSI CMOS technology , 2001 .

[16]  R. Dinapoli,et al.  Medipix2: A 64-k pixel readout chip with 55-/spl mu/m square elements working in single photon counting mode , 2001 .

[17]  K. Kano Semiconductor Devices , 1997 .

[18]  R. Bellazzini,et al.  Direct reading of charge multipliers with a self-triggering CMOS analog chip with 105 k pixels at 50 μm pitch , 2006, physics/0604114.

[19]  S. Sze Semiconductor Devices: Physics and Technology , 1985 .

[20]  Hany Aziz,et al.  Degradation Phenomena in Small-Molecule Organic Light-Emitting Devices , 2004 .

[21]  Hans Wallinga,et al.  Conduction and trapping mechanisms in SiO2 films grown near room temperature by multipolar electron cyclotron resonance plasma enhanced chemical vapor deposition , 2004 .

[22]  Y. Inaba,et al.  Degradation-free MOS image sensor with photonic crystal color filter , 2006, IEEE Electron Device Letters.

[23]  Y. Yoshino,et al.  Electrical properties of (Zr,Sn)TiO4 dielectric thin film prepared by pulsed laser deposition , 1996 .

[24]  P. Jarron,et al.  A new concept of monolithic silicon pixel detectors: hydrogenated amorphous silicon on ASIC , 2004 .

[25]  M. J. Key,et al.  On the radiation tolerance of SU-8, a new material for gaseous microstructure radiation detector fabrication , 2004 .

[26]  Advanced monolithic quantum well infrared photodetector focal plane array integrated with silicon readout integrated circuit , 2005 .

[27]  Sherif Sedky,et al.  Characterization and optimization of infrared poly SiGe bolometers , 1999 .

[28]  J. Slaughter,et al.  Progress and outlook for MRAM technology , 1999, IEEE International Magnetics Conference.

[29]  Jurriaan Schmitz,et al.  GOSSIP: A vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array , 2006 .

[30]  R. A. Wood,et al.  Uncooled thermal imaging with monolithic silicon focal planes , 1993, Optics & Photonics.

[31]  M. R. Douglass,et al.  A MEMS-based projection display , 1998, Proc. IEEE.

[32]  Oliver Brand,et al.  CMOS-based microsensors and packaging , 2001 .

[33]  T. Tanaka,et al.  Infrared focal plane array incorporating silicon IC process compatible bolometer , 1996 .

[34]  Kaustav Banerjee,et al.  3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration , 2001, Proc. IEEE.

[35]  S. M. Hu,et al.  Stress‐related problems in silicon technology , 1991 .

[36]  M. Razzano,et al.  Reading a GEM with a VLSI pixel ASIC used as a direct charge collecting anode , 2004, physics/0403019.

[37]  O. Brand,et al.  Micromachined thermally based CMOS microsensors , 1998, Proc. IEEE.

[38]  P. Sarro,et al.  Polyimide sacrificial layer and novel materials for post-processing surface micromachining , 2002 .

[39]  W. E. Howard,et al.  Microdisplays based upon organic light-emitting diodes , 2001, IBM J. Res. Dev..

[40]  W. Erdmann,et al.  Design and performance of the CMS pixel detector readout chip , 2006 .

[41]  Kin P. Cheung,et al.  Plasma Charging Damage , 2000 .

[42]  P. Chiniwalla,et al.  Multilayer planarization of polymer dielectrics , 2001 .

[43]  Thomas Mikolajick,et al.  Material Aspects in Emerging Nonvolatile Memories , 2004 .

[44]  Thomas G. Bifano,et al.  Planarization of a CMOS die for an integrated metal MEMS , 2003, SPIE MOEMS-MEMS.

[45]  F. Sauli GEM: A new concept for electron amplification in gas detectors , 1997 .

[46]  Eric R. Fossum,et al.  CMOS image sensors: electronic camera-on-a-chip , 1997 .

[47]  D. F. Moore,et al.  SU-8 thick photoresist processing as a functional material for MEMS applications , 2002 .

[48]  P.M. Smith,et al.  High-performance TFTs fabricated on plastic substrates , 2004, IEEE Electron Device Letters.

[49]  B. Khuri-Yakub,et al.  A surface micromachined electrostatic ultrasonic air transducer , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[50]  I. Underwood,et al.  Improving the flatness of silicon backplanes for high quality FLCoS microdisplays , 2002 .

[51]  M. Campbell,et al.  The detection of single electrons by means of a Micromegas-covered MediPix2 pixel CMOS readout circuit , 2005 .

[52]  A. Hamada,et al.  A new aspect on mechanical stress effects in scaled MOS devices , 1990, Digest of Technical Papers.1990 Symposium on VLSI Technology.

[53]  Lothar Strüder,et al.  High-resolution imaging X-ray spectrometers , 2000 .

[54]  J. E. Crowell,et al.  Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies , 2003 .

[55]  P. Garrou,et al.  Wafer level chip scale packaging (WL-CSP): an overview , 2000, ECTC 2000.

[56]  P. Richards Bolometers for infrared and millimeter waves , 1994 .

[57]  H. Zogg,et al.  Two-dimensional monolithic lead chalcogenide infrared sensor array on silicon read-out chip , 2003 .

[58]  Tayfun Akin,et al.  A low-cost uncooled infrared microbolometer detector in standard CMOS technology , 2003 .

[59]  Jean-Jacques Yon,et al.  Enhanced amorphous silicon technology for 320 x 240 microbolometer arrays with a pitch of 35 μm , 2001, SPIE Defense + Commercial Sensing.

[60]  E. Heijne FUTURE SEMICONDUCTOR DETECTORS USING ADVANCED MICROELECTRONICS WITH POST-PROCESSING, HYBRIDIZATION AND PACKAGING TECHNOLOGY , 2005 .

[61]  J. Holleman,et al.  Low hydrogen content silicon nitride films deposited at room temperature with an ECR plasma source , 2004 .

[62]  Determination of Young’s modulus and residual stress of electroless nickel using test structures fabricated in a new surface micromachining process , 1996 .

[63]  G. Charpak,et al.  MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments , 1996 .

[64]  A. Oed,et al.  Position-sensitive detector with microstrip anode for electron multiplication with gases☆ , 1988 .

[65]  A. Sarvestani,et al.  Study and application of hole structures as gas gain devices for two dimensional high rate X-ray detectors , 1998 .

[66]  T. Lule,et al.  Sensitivity of CMOS based imagers and scaling perspectives , 2000 .

[67]  M. Despont,et al.  SU-8: a low-cost negative resist for MEMS , 1997 .

[68]  Cora Salm,et al.  An electron-multiplying 'Micromegas' grid made in silicon wafer post-processing technology , 2006 .

[69]  Chung-Chih Wu,et al.  Ink-jet printing of doped polymers for organic light emitting devices , 1998 .

[70]  Jin-Shown Shie,et al.  Characterization and modeling of metal-film microbolometer , 1996 .