Integrated tracking and control using condensation-based critical-point matching

Image matching via multiresolution critical-point hierarchies has been shown to be useful in feature point selection, real-time tracking, volume rendering, and image interpolation. Drawbacks of the method include computational complexity and a lack of constraints on rigid motion. In this paper we present a method by which robot end-effector velocities are tracked using the condensation algorithm and critical-point image observations. By using a window-based approach, we immediately reduce complexity while imposing constraints on camera motion. We show that the critical-point observations are successful in estimating camera motion by evaluating the similarity of sample windows.

[1]  Toshimitsu Kaneko,et al.  Feature selection for reliable tracking using template matching , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[2]  Chong Luo,et al.  Face tracking in video with hybrid of Lucas-Kanade and condensation algorithm , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[3]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[4]  Tosiyasu L. Kunii,et al.  Unconstrained Automatic Image Matching Using Multiresolutional Critical-Point Filters , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Philippe Martinet,et al.  Vision Based Control Law using 3D Visual Features , 1997 .

[6]  Koichiro Deguchi,et al.  Optimal motion control for image-based visual servoing by decoupling translation and rotation , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[7]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[8]  Nicholas R. Gans,et al.  An experimental study of hybrid switched system approaches to visual servoing , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[9]  Daijin Kim,et al.  Real-time multiple people tracking using competitive condensation , 2005, Pattern Recognit..

[10]  Michael Isard,et al.  ICONDENSATION: Unifying Low-Level and High-Level Tracking in a Stochastic Framework , 1998, ECCV.

[11]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[12]  François Chaumette,et al.  2½D visual servoing , 1999, IEEE Trans. Robotics Autom..

[13]  Yoshihisa Shinagawa,et al.  Image Interpolation Using Enhanced Multiresolution Critical-Point Filters , 2004, International Journal of Computer Vision.

[14]  Gregory D. Hager,et al.  Probabilistic Data Association Methods for Tracking Complex Visual Objects , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Lee E. Weiss,et al.  Dynamic sensor-based control of robots with visual feedback , 1987, IEEE Journal on Robotics and Automation.

[16]  Alexander H. Waibel,et al.  Skin-Color Modeling and Adaptation , 1998, ACCV.

[17]  Daijin Kim,et al.  Real-time multiple people tracking using competitive condensation , 2002, Proceedings. International Conference on Image Processing.

[18]  Michel Dhome,et al.  Hyperplane Approximation for Template Matching , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Guillaume Morel,et al.  Explicit Incorporation of 2D Constraints in Vision Based Control of Robot Manipulators , 1999, ISER.

[21]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[22]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[23]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[24]  Peter I. Corke,et al.  A new partitioned approach to image-based visual servo control , 2001, IEEE Trans. Robotics Autom..

[25]  Yong Rui,et al.  Better proposal distributions: object tracking using unscented particle filter , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[26]  D HagerGregory,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998 .

[27]  Dimitris P. Tsakiris,et al.  On the visual mathematics of tracking , 1991, Image Vis. Comput..

[28]  Pooja Mittal,et al.  CONDENSATION-Based Predictive EigenTracking , 2002, ICVGIP.