Invariance and Stability of Deep Convolutional Representations

In this paper, we study deep signal representations that are near-invariant to groups of transformations and stable to the action of diffeomorphisms without losing signal information. This is achieved by generalizing the multilayer kernel introduced in the context of convolutional kernel networks and by studying the geometry of the corresponding reproducing kernel Hilbert space. We show that the signal representation is stable, and that models from this functional space, such as a large class of convolutional neural networks, may enjoy the same stability.

[1]  S. Saitoh Integral Transforms, Reproducing Kernels and Their Applications , 1997 .

[2]  J. Diestel,et al.  On vector measures , 1974 .

[3]  Katya Scheinberg,et al.  Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..

[4]  Yoram Singer,et al.  Toward Deeper Understanding of Neural Networks: The Power of Initialization and a Dual View on Expressivity , 2016, NIPS.

[5]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[6]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[7]  Martin J. Wainwright,et al.  Convexified Convolutional Neural Networks , 2016, ICML.

[8]  Lorenzo Rosasco,et al.  Deep Convolutional Networks are Hierarchical Kernel Machines , 2015, ArXiv.

[9]  Max Welling,et al.  Group Equivariant Convolutional Networks , 2016, ICML.

[10]  Shai Ben-David,et al.  Understanding Machine Learning: From Theory to Algorithms , 2014 .

[11]  Yuchen Zhang,et al.  L1-regularized Neural Networks are Improperly Learnable in Polynomial Time , 2015, ICML.

[12]  Joan Bruna,et al.  Learning Stable Group Invariant Representations with Convolutional Networks , 2013, ICLR.

[13]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[14]  Stéphane Mallat,et al.  Group Invariant Scattering , 2011, ArXiv.

[15]  Klaus-Robert Müller,et al.  Kernel Analysis of Deep Networks , 2011, J. Mach. Learn. Res..

[16]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[17]  Tomaso A. Poggio,et al.  Learning with Group Invariant Features: A Kernel Perspective , 2015, NIPS.

[18]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[19]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[20]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[21]  Bernhard Schölkopf,et al.  Kernel Mean Embedding of Distributions: A Review and Beyonds , 2016, Found. Trends Mach. Learn..

[22]  Hans Burkhardt,et al.  Invariant kernel functions for pattern analysis and machine learning , 2007, Machine Learning.

[23]  Bernhard Schölkopf,et al.  Support vector learning , 1997 .

[24]  Stéphane Mallat,et al.  Rotation, Scaling and Deformation Invariant Scattering for Texture Discrimination , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Stéphane Mallat,et al.  Deep roto-translation scattering for object classification , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Cordelia Schmid,et al.  Convolutional Kernel Networks , 2014, NIPS.

[27]  S. Mallat,et al.  Invariant Scattering Convolution Networks , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Julien Mairal,et al.  Group Invariance and Stability to Deformations of Deep Convolutional Representations , 2017, ArXiv.

[29]  Lorenzo Rosasco,et al.  On Invariance and Selectivity in Representation Learning , 2015, ArXiv.

[30]  Bernhard Schölkopf,et al.  Sparse Greedy Matrix Approximation for Machine Learning , 2000, International Conference on Machine Learning.

[31]  I. J. Schoenberg Positive definite functions on spheres , 1942 .

[32]  Bernhard Schölkopf,et al.  Local Group Invariant Representations via Orbit Embeddings , 2016, AISTATS.

[33]  Dieter Fox,et al.  Object recognition with hierarchical kernel descriptors , 2011, CVPR 2011.

[34]  Julien Mairal,et al.  End-to-End Kernel Learning with Supervised Convolutional Kernel Networks , 2016, NIPS.

[35]  Lawrence K. Saul,et al.  Kernel Methods for Deep Learning , 2009, NIPS.

[36]  Moustapha Cissé,et al.  Parseval Networks: Improving Robustness to Adversarial Examples , 2017, ICML.