Electric double layer force between charged surfaces: effect of solvent polarization.

In this paper, we develop a theory to delineate the consequences of finite solvent polarization in electric double layer interaction or the osmotic pressure between two similar or oppositely charged surfaces. We use previously published Langevin-Bikerman equations to calculate this electric double layer interaction force or the osmotic pressure between the charged surfaces. The osmotic pressure between oppositely charged surfaces is found to be much larger than that between similarly charged surfaces, and for either case, the influence of solvent polarization ensures a larger pressure than that predicted by the Poisson-Boltzmann (PB) model. We derive distinct scaling relationships to explain the increase of the pressure as a function of the separation between the surfaces, the solvent polarizability, and the number density of water molecules. Most importantly, we demonstrate that our theory can successfully reproduce the experimental results of interaction force between similar and oppositely charged surfaces, by accounting for the large under-prediction made by the corresponding PB model.

[1]  S. Safran,et al.  Direct measurement of sub-Debye-length attraction between oppositely charged surfaces. , 2009, Physical review letters.

[2]  Zhenli Xu,et al.  Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers. , 2012, The Journal of chemical physics.

[3]  C. Tsouris,et al.  Behavior of mixtures of symmetric and asymmetric electrolytes near discretely charged planar surfaces: a Monte Carlo study. , 2005, The Journal of chemical physics.

[4]  U. van Rienen,et al.  Spatial variation of permittivity of an electrolyte solution in contact with a charged metal surface: a mini review , 2012, Computer methods in biomechanics and biomedical engineering.

[5]  B. Ninham,et al.  Interactions between a positively charged hydrophobic surface and a negatively charged bare mica surface , 1987 .

[6]  Ales Iglic,et al.  Excluded volume effect and orientational ordering near charged surface in solution of ions and Langevin dipoles. , 2010, Bioelectrochemistry.

[7]  Aleš Iglič,et al.  Generalized stern models of the electric double layer considering the spatial variation of permittvity and finite size of ions in saturation regime , 2011, Cellular & Molecular Biology Letters.

[8]  Omar Teschke,et al.  Dielectric constant measurements of interfacial aqueous solutions using atomic force microscopy , 2001 .

[9]  Zhi-Yong Wang,et al.  A molecular simulation study on the role of ion sizes and dielectric images in near-surface ion distribution far from the strong coupling limit. , 2012, The Journal of chemical physics.

[10]  F. Mas,et al.  Effect of the surface charge discretization on electric double layers: a Monte Carlo simulation study. , 2007, The Journal of chemical physics.

[11]  Shaozhong Deng,et al.  Image charge approximations of reaction fields in solvents with arbitrary ionic strength , 2009, J. Comput. Phys..

[12]  Omar Teschke,et al.  Interfacial aqueous solutions dielectric constant measurements using atomic force microscopy , 2000 .

[13]  J. Hsu,et al.  Analytic expressions for electrical energy and electrical force of two spheres. , 2009, The Journal of chemical physics.

[14]  S. Chakraborty,et al.  Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Suman Chakraborty,et al.  Redefining electrical double layer thickness in narrow confinements: effect of solvent polarization. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Ursula van Rienen,et al.  Langevin Poisson-Boltzmann equation: point-like ions and water dipoles near a charged surface. , 2011, General physiology and biophysics.

[17]  A. Bellen,et al.  Attraction between negatively charged surfaces mediated by spherical counterions with quadrupolar charge distribution. , 2008, The Journal of chemical physics.

[18]  Aleš Iglič,et al.  Decrease of permittivity of an electrolyte solution near a charged surface due to saturation and excluded volume effects. , 2012, Bioelectrochemistry.

[19]  J. Hansen,et al.  Effective interactions between electric double layers. , 2000, Annual review of physical chemistry.

[20]  Patrice Koehl,et al.  Incorporating dipolar solvents with variable density in Poisson-Boltzmann electrostatics. , 2008, Biophysical journal.

[21]  David Andelman,et al.  Dipolar Poisson-Boltzmann equation: ions and dipoles close to charge interfaces. , 2007, Physical review letters.

[22]  R. Podgornik,et al.  Beyond standard Poisson–Boltzmann theory: ion-specific interactions in aqueous solutions , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  K. J. Mysels,et al.  Direct measurement of the variation of double-layer repulsion with distance , 1966 .

[24]  F. Booth Dielectric Constant of Polar Liquids at High Field Strengths , 1955 .

[25]  M. O. de la Cruz,et al.  Entropic effects in the electric double layer of model colloids with size-asymmetric monovalent ions. , 2011, The Journal of chemical physics.

[26]  Veronika Kralj-Iglic,et al.  Effects of counterion size on the attraction between similarly charged surfaces. , 2010, The Journal of chemical physics.

[27]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  M. Olvera de la Cruz,et al.  Potential of mean force between identical charged nanoparticles immersed in a size-asymmetric monovalent electrolyte. , 2011, The Journal of chemical physics.

[29]  L. Scriven,et al.  Effects of solvent exclusion on the force between charged surfaces in electrolyte solution , 1994 .

[30]  S. W. Kenkel,et al.  A finite‐length‐dipole model of the double layer in polar, polarizable materials , 1984 .

[31]  M. Olvera de la Cruz,et al.  Inversion of the Electric Field at the Electrified Liquid-Liquid Interface. , 2013, Journal of chemical theory and computation.