Contribution of Anisotropic Electron Current to the Magnetotail Current Sheet as a Function of Location and Plasma Conditions

The magnetotail current sheet carries the current responsible for the largest fraction of the energy storage in the magnetotail, the magnetic energy in the lobes. It is thus inextricably linked with the dynamics and evolution of many magnetospheric phenomena, such as substorms. The magnetotail current sheet structure and stability depend mostly on the kinetic properties of the plasma populating the magnetotail. One of the most underinvestigated properties of this plasma is electron temperature anisotropy, which may contribute a large fraction of the total current. Using observations from five missions in the magnetotail, we examine the electron temperature anisotropy, Te‖/Te⊥, and its potential contribution to the current density, quantified by the firehose parameter (βe‖−βe⊥)/2, across y∈[−20,20]RE and x∈[−100,−10]RE. We find that a significant fraction (>30%) of all current sheets have an anisotropic electron current density >10% of the total current. These current sheets form two distinct groups: (1) near‐Earth (<30 RE) accompanied by weak plasma flows (<100 km/s) and enhanced equatorial magnetic field (>3 nT) and (2) middle tail (>40 RE) accompanied by fast plasma flows (>300 km/s) and small equatorial magnetic field (≤1 nT). For a significant number of near‐Earth current sheets, the anisotropic electron current can be >25% of the total current density. Our findings suggest that electron temperature anisotropy should be included in current sheet models describing realistic magnetotail structure and dynamics.

[1]  V. Angelopoulos,et al.  The Hall Electric Field in Earth's Magnetotail Thin Current Sheet , 2019, Journal of Geophysical Research: Space Physics.

[2]  J. G. Sample,et al.  The Space Physics Environment Data Analysis System (SPEDAS) , 2019, Space Science Reviews.

[3]  H. Malova,et al.  Model of a Thin Current Sheet in the Earth’s Magnetotail with a Kinetic Description of Magnetized Electrons , 2018, Plasma Physics Reports.

[4]  V. Angelopoulos,et al.  Whistler and Electron Firehose Instability Control of Electron Distributions in and Around Dipolarizing Flux Bundles , 2018, Geophysical Research Letters.

[5]  P. Pritchett,et al.  Externally Driven Onset of Localized Magnetic Reconnection and Disruption in a Magnetotail Configuration , 2018 .

[6]  A. Lui Review on the Characteristics of the Current Sheet in the Earth's Magnetotail , 2018 .

[7]  V. Angelopoulos,et al.  Intense Cross‐Tail Field‐Aligned Currents in the Plasma Sheet at Lunar Distances , 2017, 1711.08605.

[8]  V. Angelopoulos,et al.  Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields , 2017 .

[9]  R. Nakamura,et al.  Relationship between electron field‐aligned anisotropy and dawn‐dusk magnetic field: Nine years of Cluster observations in the Earth magnetotail , 2017 .

[10]  R. Nakamura,et al.  Magnetospheric Multiscale analysis of intense field‐aligned Poynting flux near the Earth's plasma sheet boundary , 2017 .

[11]  V. Angelopoulos,et al.  Characteristics of ion distribution functions in dipolarizing flux bundles: Event studies , 2017 .

[12]  V. Angelopoulos,et al.  Ion dynamics in magnetotail reconnection in the presence of density asymmetry , 2017 .

[13]  A. Runov,et al.  Electron currents supporting the near‐Earth magnetotail during current sheet thinning , 2017 .

[14]  C. Chaston,et al.  Ion gyroradius effects on particle trapping in kinetic Alfvén waves along auroral field lines , 2016 .

[15]  V. Angelopoulos,et al.  Effects of electron pressure anisotropy on current sheet configuration , 2016 .

[16]  V. Angelopoulos,et al.  Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission , 2016 .

[17]  V. Merkin,et al.  Generalized magnetotail equilibria: Effects of the dipole field, thin current sheets, and magnetic flux accumulation , 2016 .

[18]  V. Angelopoulos,et al.  On the radial force balance in the quiet time magnetotail current sheet , 2016 .

[19]  R. Nakamura,et al.  Formation of sub-ion scale filamentary force-free structures in the vicinity of reconnection region , 2016 .

[20]  U. Gliese,et al.  Fast Plasma Investigation for Magnetospheric Multiscale , 2016 .

[21]  Thomas E. Moore,et al.  Magnetospheric Multiscale Overview and Science Objectives , 2016 .

[22]  Wolfgang Baumjohann,et al.  The Magnetospheric Multiscale Magnetometers , 2016 .

[23]  V. Angelopoulos,et al.  The role of localized inductive electric fields in electron injections around dipolarizing flux bundles , 2015 .

[24]  R. Rankin,et al.  Electron trapping and acceleration by kinetic Alfven waves in the inner magnetosphere , 2015 .

[25]  T. Neukirch,et al.  An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta , 2015, 1510.07667.

[26]  R. Nakamura,et al.  Earth's distant magnetotail current sheet near and beyond lunar orbit , 2015 .

[27]  J. Eastwood,et al.  Ion temperature anisotropy across a magnetotail reconnection jet , 2015, Geophysical research letters.

[28]  C. Chaston,et al.  Ion temperature effects on magnetotail Alfvén wave propagation and electron energization , 2015 .

[29]  R. Nakamura,et al.  Statistics of intense dawn‐dusk currents in the Earth's magnetotail , 2015 .

[30]  J. Eastwood,et al.  The location and rate of occurrence of near-Earth magnetotail reconnection as observed by Cluster and Geotail , 2014 .

[31]  H. Malova,et al.  Thin current sheets with strong bell-shape guide field: Cluster observations and models with beams , 2014 .

[32]  Zhengxiong Wang,et al.  Kinetic Alfvén waves in three‐dimensional magnetic reconnection , 2014 .

[33]  J. Birn,et al.  Onset of reconnection in the near magnetotail: PIC simulations , 2014 .

[34]  Wolfgang Baumjohann,et al.  Electron pitch angle/energy distribution in the magnetotail , 2014 .

[35]  R. Nakamura,et al.  The structure of strongly tilted current sheets in the Earth magnetotail , 2014 .

[36]  J. Birn,et al.  Forced reconnection in the near magnetotail: Onset and energy conversion in PIC and MHD simulations , 2014 .

[37]  P. Hellinger,et al.  Oblique electron fire hose instability: Particle‐in‐cell simulations , 2014 .

[38]  I. J. Rae,et al.  Sources of electron pitch angle anisotropy in the magnetotail plasma sheet , 2013 .

[39]  J. Goldstein,et al.  An empirical model for the location and occurrence rate of near‐Earth magnetotail reconnection , 2013 .

[40]  L. Zelenyi,et al.  Kinetic Structure of Current Sheets in the Earth Magnetotail , 2013 .

[41]  P. Pritchett The onset of magnetic reconnection in three dimensions , 2013 .

[42]  William Daughton,et al.  A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection , 2013 .

[43]  R. Nakamura,et al.  Intense current sheets in the magnetotail: Peculiarities of electron physics , 2013 .

[44]  A. Neishtadt,et al.  Quasiadiabatic dynamics of charged particles in a space plasma , 2013 .

[45]  T. Nagai,et al.  Magnetic Reconnection in the Near‐Earth Magnetotail , 2013, Magnetospheres in the Solar System.

[46]  N. Buzulukova,et al.  Spontaneous formation of dipolarization fronts and reconnection onset in the magnetotail , 2013 .

[47]  R. Walker,et al.  Adiabatic acceleration of suprathermal electrons associated with dipolarization fronts , 2012 .

[48]  A. Vaivads,et al.  Pitch angle distribution of suprathermal electrons behind dipolarization fronts: A statistical overview , 2012 .

[49]  V. Angelopoulos,et al.  Energy transport by kinetic‐scale electromagnetic waves in fast plasma sheet flows , 2012 .

[50]  V. Angelopoulos,et al.  Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet , 2012 .

[51]  M. Dunlop,et al.  Profile of strong magnetic field By component in magnetotail current sheets , 2012 .

[52]  R. Nakamura,et al.  Adiabatic electron heating in the magnetotail current sheet: Cluster observations and analytical models , 2012 .

[53]  Wolfgang Baumjohann,et al.  Proton/electron temperature ratio in the magnetotail , 2011 .

[54]  Vassilis Angelopoulos,et al.  The ARTEMIS Mission , 2011 .

[55]  Z. Vörös Magnetic reconnection associated fluctuations in the deep magnetotail: ARTEMIS results , 2011 .

[56]  C. Owen,et al.  Plasma jet braking: energy dissipation and nonadiabatic electrons. , 2011, Physical review letters.

[57]  H. Malova,et al.  Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration , 2011 .

[58]  C. Owen,et al.  Average magnetotail electron and proton pitch angle distributions from Cluster PEACE and CIS observations , 2011 .

[59]  A. Artemyev A model of one-dimensional current sheet with parallel currents and normal component of magnetic field , 2011 .

[60]  R. Nakamura,et al.  Proton velocity distribution in thin current sheets: Cluster observations and theory of transient trajectories , 2010 .

[61]  W. Wan,et al.  The analytic properties of the flapping current sheets in the earth magnetotail , 2010 .

[62]  Wolfgang Baumjohann,et al.  Electron acceleration signatures in the magnetotail associated with substorms , 2010 .

[63]  R. Nakamura,et al.  Thin embedded current sheets: Cluster observations of ion kinetic structure and analytical models , 2009 .

[64]  V. Angelopoulos,et al.  THEMIS observations of an earthward‐propagating dipolarization front , 2009 .

[65]  V. Angelopoulos,et al.  Thin current sheet in the substorm late growth phase: Modeling of THEMIS observations , 2009 .

[66]  C. Watt,et al.  Electron trapping in shear Alfvén waves that power the aurora. , 2009, Physical review letters.

[67]  T. Neukirch,et al.  One-dimensional Vlasov-Maxwell equilibrium for the force-free Harris sheet. , 2008, Physical review letters.

[68]  R. Abiad,et al.  The THEMIS ESA Plasma Instrument and In-flight Calibration , 2008 .

[69]  R. Nakamura,et al.  Comparison of multi-point measurements of current sheet structure and analytical models , 2008 .

[70]  I. J. Rae,et al.  Tail Reconnection Triggering Substorm Onset , 2008, Science.

[71]  Rumi Nakamura,et al.  Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field , 2008 .

[72]  Werner Magnes,et al.  The THEMIS Fluxgate Magnetometer , 2008 .

[73]  Vassilis Angelopoulos,et al.  The THEMIS Mission , 2008 .

[74]  E. Whipple,et al.  Multifluid model of a one‐dimensional steady state magnetotail current sheet , 2008 .

[75]  H. Malova,et al.  Marginal stability of thin current sheets in the Earth's magnetotail , 2008 .

[76]  L. Zelenyi,et al.  Numerical simulations of plasma equilibrium in a one-dimensional current sheet with a nonzero normal magnetic field component , 2007 .

[77]  Andrey Divin,et al.  Reconnection onset in the magnetotail: Particle simulations with open boundary conditions , 2007 .

[78]  Parvez N. Guzdar,et al.  Structure and dynamics of a new class of thin current sheets , 2006 .

[79]  Rumi Nakamura,et al.  Local structure of the magnetotail current sheet: 2001 Cluster observations , 2006 .

[80]  Wolfgang Baumjohann,et al.  Electric current and magnetic field geometry in flapping magnetotail current sheets , 2005 .

[81]  A. Sharma,et al.  Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy , 2004 .

[82]  A. Lui,et al.  Model of ion‐ or electron‐dominated current sheet , 2004 .

[83]  Robert L. Lysak,et al.  Magnetosphere-ionosphere coupling by Alfvén waves at midlatitudes , 2004 .

[84]  M. Sitnov,et al.  Current‐driven instabilities in forced current sheets , 2004 .

[85]  J. Birn,et al.  Thin electron current sheets and their relation to auroral potentials , 2004 .

[86]  S. Gary,et al.  Resonant electron firehose instability: Particle-in-cell simulations , 2003 .

[87]  M. Sitnov,et al.  A model of the bifurcated current sheet , 2003 .

[88]  K. Glassmeier,et al.  Plasma sheet structure during strongly northward IMF , 2003 .

[89]  C. Russell,et al.  Evidence for kinetic Alfvén waves and parallel electron energization at 4-6 RE altitudes in the plasma sheet boundary layer , 2002 .

[90]  C. Russell,et al.  Plasma sheet electromagnetic power generation and its dissipation along auroral field lines , 2002 .

[91]  J. Birn,et al.  Models of two‐dimensional embedded thin current sheets from Vlasov theory , 2001 .

[92]  P. Pritchett Collisionless magnetic reconnection in a three‐dimensional open system , 2001 .

[93]  Wolfgang Baumjohann,et al.  Bi‐directional electron distributions associated with near‐tail flux transport , 2001 .

[94]  I. Papamastorakis,et al.  First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment , 2001 .

[95]  M. Fehringer,et al.  Introduction The Cluster mission , 2001 .

[96]  M. W. Dunlop,et al.  The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results , 2001 .

[97]  A. Lui,et al.  On the drift‐sausage mode in one‐dimensional current sheet , 2001 .

[98]  H. Malova,et al.  Thin and superthin ion current sheets. Quasi-adiabatic and nonadiabatic models , 2000 .

[99]  H. Malova,et al.  Thin current sheet embedded within a thicker plasma sheet: Self-consistent kinetic theory , 2000 .

[100]  W. Daughton The unstable eigenmodes of a neutral sheet , 1999 .

[101]  Manuel Grande,et al.  PEACE: A PLASMA ELECTRON AND CURRENT EXPERIMENT , 1997 .

[102]  P. Pritchett,et al.  Three‐dimensional stability of thin quasi‐neutral current sheets , 1996 .

[103]  Daniel N. Baker,et al.  Neutral line model of substorms: Past results and present view , 1996 .

[104]  Joseph Wang,et al.  Whistler instability: Electron anisotropy upper bound , 1996 .

[105]  H. Karimabadi,et al.  Consequences of particle conservation along a flux surface for magnetotail tearing , 1996 .

[106]  G. Voigt,et al.  A study of weak anisotropy in electron pressure in the tail current sheet , 1995 .

[107]  Atsuhiro Nishida,et al.  The Geotail Mission , 1994 .

[108]  Nobuyuki Kaya,et al.  The Low Energy Particle (LEP) Experiment onboard the GEOTAIL Satellite , 1994 .

[109]  Hideaki Kawano,et al.  The GEOTAIL Magnetic Field Experiment. , 1994 .

[110]  L. Hau Anisotropic magnetotail equilibrium and convection , 1993 .

[111]  P. Pritchett,et al.  Formation and stability of the self‐consistent one‐dimensional tail current sheet , 1992 .

[112]  T. Speiser,et al.  A particle model for magnetotail neutral sheet equilibria , 1992 .

[113]  M. M. Kuznetsova,et al.  Magnetic reconnection in collisionless field reversals the universality of the ion tearing mode , 1991 .

[114]  H. Karimabadi,et al.  Collisionless reconnection in two-dimensional magnetotail equilibria , 1991 .

[115]  P. Pritchett,et al.  does ion tearing exist , 1991 .

[116]  R. Lysak Electrodynamic coupling of the magnetosphere and ionosphere , 1990 .

[117]  Lev M. Zelenyi,et al.  Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion , 1989 .

[118]  E. W. Hones,et al.  Bi‐directional electron pitch angle anisotropy in the plasma sheet , 1981 .

[119]  S. Cowley,et al.  A note on adiabatic solutions of the one-dimensional current sheet problem , 1979 .

[120]  S. Cowley The effect of pressure anisotropy on the equilibrium structure of magnetic current sheets , 1978 .

[121]  R. Pellat,et al.  Magnetic merging in collisionless plasmas , 1976 .

[122]  T. Hill Magnetic merging in a collisionless plasma , 1975 .

[123]  K. Schindler A SELF-CONSISTENT THEORY OF THE TAIL OF THE MAGNETOSPHERE , 1972 .

[124]  Charles F. Kennel,et al.  Velocity Space Diffusion from Weak Plasma Turbulence in a Magnetic Field , 1966 .

[125]  M. J. Lighthill Space Physics , 1965, Nature.

[126]  R. Sagdeev,et al.  Quasi-linear theory of plasma oscillations , 1962 .

[127]  R. Sagdeev,et al.  Some properties of a plasma with an anisotropic ion velocity distribution in a magnetic field , 1961 .