Performance Analysis of Models for Calculating the Maximum Power of High Concentrator Photovoltaic Modules

Due to its special features, one of the problems of high concentrator photovoltaic (HCPV) technology is the estimation of the electrical output of an HCPV module. Although there are several methods for doing this, only some of them can be applied using easily obtainable atmospheric parameters. In this paper, four models to estimate the maximum power of an HCPV module are studied and compared. The models that have been taken into account are the standard ASTM E2527, the linear coefficient model, the Sandia National Laboratories model, and an artificial neural network-based model. Results demonstrate that the four methods show adequate behavior in the estimation of the maximum power of several HCPV modules from different manufacturers.

[1]  Eduardo F. Fernández,et al.  Models for the electrical characterization of high concentration photovoltaic cells and modules: A review , 2013 .

[2]  Eduardo F. Fernández,et al.  A two subcell equivalent solar cell model for III–V triple junction solar cells under spectrum and temperature variations , 2013 .

[3]  H. Brindley,et al.  Impact of individual atmospheric parameters on CPV system power, energy yield and cost of energy , 2014 .

[4]  C. Gueymard Analysis of monthly average atmospheric precipitable water and turbidity in Canada and Northern United States , 1994 .

[5]  Gerald Siefer,et al.  Analysis of temperature coefficients for III–V multi‐junction concentrator cells , 2014 .

[6]  Eduardo F. Fernández,et al.  Model for the prediction of the maximum power of a high concentrator photovoltaic module , 2013 .

[7]  Jacek M. Zurada,et al.  Introduction to artificial neural systems , 1992 .

[8]  G. Peharz,et al.  Investigations on the temperature dependence of CPV modules equipped with triple‐junction solar cells , 2011 .

[9]  A.K. Ghosh,et al.  The classification of power system disturbance waveforms using a neural network approach , 1994, Proceedings of IEEE/PES Transmission and Distribution Conference.

[10]  P. G. Vidal,et al.  Outdoor evaluation of concentrator photovoltaic systems modules from different manufacturers: first results and steps , 2013 .

[11]  Eduardo F. Fernández,et al.  Analysis of high concentrator photovoltaic modules in outdoor conditions: Influence of direct normal irradiance, air temperature, and air mass , 2014 .

[12]  Christian A. Gueymard,et al.  Assessment of the Accuracy and Computing Speed of Simplified Saturation Vapor Equations Using a New Reference Dataset. , 1993 .

[13]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[14]  Russell Reed,et al.  Pruning algorithms-a survey , 1993, IEEE Trans. Neural Networks.

[15]  Eduardo F. Fernández,et al.  Temperature coefficients of monolithic III-V triple-junction solar cells under different spectra and irradiance levels , 2012 .

[16]  Bruce Curry,et al.  Model selection in Neural Networks: Some difficulties , 2006, Eur. J. Oper. Res..

[17]  Eduardo F. Fernández,et al.  Estimating the maximum power of a High Concentrator Photovoltaic (HCPV) module using an Artificial Neural Network , 2013 .

[18]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[19]  J. A. Ruiz-Arias,et al.  Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions , 2014 .

[20]  Brent Fisher,et al.  Semprius Field Results and Progress in System Development , 2014, IEEE Journal of Photovoltaics.

[21]  Matthew Muller,et al.  Minimizing Variation In Outdoor CPV Power Ratings , 2011 .

[22]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[23]  Eduardo F. Fernández,et al.  Quantifying the effect of air temperature in CPV modules under outdoor conditions , 2012 .

[24]  K. Araki,et al.  Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan , 2013 .

[25]  Eric Guiot,et al.  Wafer bonded four‐junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency , 2014 .

[26]  Eduardo F. Fernández,et al.  Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization , 2014 .

[27]  Eduardo F. Fernández,et al.  Calculation of the cell temperature of a high concentrator photovoltaic (HCPV) module: A study and comparison of different methods , 2014 .

[28]  Kenji Araki,et al.  Multi-junction III-V solar cells: current status and future potential , 2005 .

[29]  Florencia Almonacid,et al.  Spectrally corrected direct normal irradiance based on artificial neural networks for high concentrator photovoltaic applications , 2014 .

[30]  Eduardo F. Fernández,et al.  Performance analysis of the lineal model for estimating the maximum power of a HCPV module in different climate conditions , 2014 .

[31]  Eduardo F. Fernández,et al.  Relation between the cell temperature of a HCPV module and atmospheric parameters , 2012 .

[32]  Eduardo F. Fernández,et al.  A method for estimating cell temperature at the maximum power point of a HCPV module under actual operating conditions , 2014 .

[33]  Robert McConnell Concentrator photovoltaic technologies , 2005 .

[34]  G. Almonacid,et al.  High Concentrator PhotoVoltaics efficiencies: Present status and forecast , 2011 .

[35]  Karsten Heuser,et al.  Performance results from micro‐cell based high concentration photovoltaic research development and demonstration systems , 2013 .

[36]  Gerald Siefer,et al.  Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon , 2014, IEEE Journal of Photovoltaics.

[37]  A. T. Young,et al.  Revised optical air mass tables and approximation formula. , 1989, Applied optics.

[38]  I. Luque-Heredia,et al.  Photovoltaic concentration at the onset of its commercial deployment , 2006 .

[39]  Eduardo F. Fernández,et al.  A simplified method for estimating direct normal solar irradiation from global horizontal irradiation useful for CPV applications , 2012 .