Environmental Boundaries as an Error Correction Mechanism for Grid Cells

Medial entorhinal grid cells fire in periodic, hexagonally patterned locations and are proposed to support path-integration-based navigation. The recursive nature of path integration results in accumulating error and, without a corrective mechanism, a breakdown in the calculation of location. The observed long-term stability of grid patterns necessitates that the system either performs highly precise internal path integration or implements an external landmark-based error correction mechanism. To distinguish these possibilities, we examined grid cells in behaving rodents as they made long trajectories across an open arena. We found that error accumulates relative to time and distance traveled since the animal last encountered a boundary. This error reflects coherent drift in the grid pattern. Further, interactions with boundaries yield direction-dependent error correction, suggesting that border cells serve as a neural substrate for error correction. These observations, combined with simulations of an attractor network grid cell model, demonstrate that landmarks are crucial to grid stability.

[1]  Alessandro Treves,et al.  The emergence of grid cells: Intelligent design or just adaptation? , 2008, Hippocampus.

[2]  Thomas J. Wills,et al.  Development of the Hippocampal Cognitive Map in Preweanling Rats , 2010, Science.

[3]  May-Britt Moser,et al.  The entorhinal grid map is discretized , 2012, Nature.

[4]  D. Touretzky,et al.  Cognitive maps beyond the hippocampus , 1997, Hippocampus.

[5]  B. McNaughton,et al.  Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells. , 1998, Journal of neurophysiology.

[6]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[7]  Nathaniel J. Killian,et al.  A map of visual space in the primate entorhinal cortex , 2012, Nature.

[8]  Sachin S. Deshmukh,et al.  Representation of Non-Spatial and Spatial Information in the Lateral Entorhinal Cortex , 2011, Front. Behav. Neurosci..

[9]  Jonathan D. Cohen,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006 .

[10]  B. McNaughton,et al.  Hebb-Marr networks and the neurobiological representation of action in space. , 1990 .

[11]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[12]  K M Gothard,et al.  Dentate Gyrus and CA1 Ensemble Activity during Spatial Reference Frame Shifts in the Presence and Absence of Visual Input , 2001, The Journal of Neuroscience.

[13]  M. Hasselmo Grid cell mechanisms and function: Contributions of entorhinal persistent spiking and phase resetting , 2008, Hippocampus.

[14]  J. O’Keefe,et al.  An oscillatory interference model of grid cell firing , 2007, Hippocampus.

[15]  K. Jeffery,et al.  The Boundary Vector Cell Model of Place Cell Firing and Spatial Memory , 2006, Reviews in the neurosciences.

[16]  Michael E Hasselmo,et al.  Knock-Out of HCN1 Subunit Flattens Dorsal–Ventral Frequency Gradient of Medial Entorhinal Neurons in Adult Mice , 2009, The Journal of Neuroscience.

[17]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[18]  Jonathan R. Whitlock,et al.  Fragmentation of grid cell maps in a multicompartment environment , 2009, Nature Neuroscience.

[19]  A. Etienne Navigation of a Small Mammal by Dead Reckoning and Local Cues , 1992 .

[20]  K M Gothard,et al.  Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  Ila Fiete,et al.  Grid cells generate an analog error-correcting code for singularly precise neural computation , 2011, Nature Neuroscience.

[22]  Lisa M. Giocomo,et al.  Grid Cells Use HCN1 Channels for Spatial Scaling , 2011, Cell.

[23]  Tamás Kiss,et al.  Robust path integration in the entorhinal grid cell system with hippocampal feed-back , 2009, Biological Cybernetics.

[24]  Alessandro Treves,et al.  Representing Where along with What Information in a Model of a Cortical Patch , 2008, PLoS Comput. Biol..

[25]  J. Knierim,et al.  Influence of boundary removal on the spatial representations of the medial entorhinal cortex , 2008, Hippocampus.

[26]  K. Jeffery,et al.  Experience-dependent rescaling of entorhinal grids , 2007, Nature Neuroscience.

[27]  Laurenz Wiskott,et al.  Spatial representations of place cells in darkness are supported by path integration and border information , 2014, Front. Behav. Neurosci..

[28]  Yoram Burakyy,et al.  Accurate Path Integration in Continuous Attractor Network Models of Grid Cells , 2009 .

[29]  Lisa M. Giocomo,et al.  Topography of Head Direction Cells in Medial Entorhinal Cortex , 2014, Current Biology.

[30]  Bruce L. McNaughton,et al.  A Model of the Neural Basis of the Rat's Sense of Direction , 1994, NIPS.

[31]  J. O’Keefe,et al.  Boundary Vector Cells in the Subiculum of the Hippocampal Formation , 2009, The Journal of Neuroscience.

[32]  Edvard I. Moser,et al.  Shearing-induced asymmetry in entorhinal grid cells , 2015, Nature.

[33]  C. Darwin Origin of Certain Instincts , 1873, Nature.

[34]  M. Andersson,et al.  Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles , 2005 .

[35]  M. Moser,et al.  Traces of Experience in the Lateral Entorhinal Cortex , 2013, Current Biology.

[36]  Daniel L. Schacter,et al.  Spatial Representation in the Entorhinal Cortex , 2004 .

[37]  Edvard I Moser,et al.  Development of the Spatial Representation System in the Rat , 2010, Science.

[38]  Mark C. Fuhs,et al.  A Spin Glass Model of Path Integration in Rat Medial Entorhinal Cortex , 2006, The Journal of Neuroscience.

[39]  H. Mittelstaedt,et al.  Homing by path integration in a mammal , 1980, Naturwissenschaften.

[40]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[41]  M. Moser,et al.  Representation of Geometric Borders in the Developing Rat , 2014, Neuron.

[42]  M. Nolan,et al.  Tuning of Synaptic Integration in the Medial Entorhinal Cortex to the Organization of Grid Cell Firing Fields , 2008, Neuron.

[43]  G. Buzsáki,et al.  Memory, navigation and theta rhythm in the hippocampal-entorhinal system , 2013, Nature Neuroscience.

[44]  B. McNaughton,et al.  Dead Reckoning, Landmark Learning, and the Sense of Direction: A Neurophysiological and Computational Hypothesis , 1991, Journal of Cognitive Neuroscience.

[45]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[46]  J. O’Keefe,et al.  Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells , 2005, Hippocampus.

[47]  Lisa M. Giocomo,et al.  Hyperpolarization‐activated cyclic nucleotide‐gated 1 independent grid cell‐phase precession in mice , 2014, Hippocampus.

[48]  N. Burgess,et al.  A Hybrid Oscillatory Interference/Continuous Attractor Network Model of Grid Cell Firing , 2014, The Journal of Neuroscience.

[49]  Caswell Barry,et al.  Grid cell symmetry is shaped by environmental geometry , 2015, Nature.

[50]  Bruce L. McNaughton,et al.  Progressive Transformation of Hippocampal Neuronal Representations in “Morphed” Environments , 2005, Neuron.

[51]  M. Bartels,et al.  Sinnesphysiologische und psychologische Untersuchungen an der Trichterspinne Agelena labyrinthica (Cl.) , 1929, Zeitschrift für vergleichende Physiologie.

[52]  W E Skaggs,et al.  Deciphering the hippocampal polyglot: the hippocampus as a path integration system. , 1996, The Journal of experimental biology.

[53]  N. Burgess Grid cells and theta as oscillatory interference: Theory and predictions , 2008, Hippocampus.

[54]  D S Touretzky,et al.  Theory of rodent navigation based on interacting representations of space , 1996, Hippocampus.

[55]  M. Srinivasan,et al.  Searching behaviour of desert ants, genusCataglyphis (Formicidae, Hymenoptera) , 2004, Journal of comparative physiology.

[56]  K M Gothard,et al.  Dynamics of Mismatch Correction in the Hippocampal Ensemble Code for Space: Interaction between Path Integration and Environmental Cues , 1996, The Journal of Neuroscience.

[57]  I. Fiete,et al.  A Model of Grid Cell Development through Spatial Exploration and Spike Time-Dependent Plasticity , 2014, Neuron.

[58]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[59]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[60]  K. Zhang,et al.  Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.