Primal-Dual Symmetry and Scale Invariance of Interior-Point Algorithms for Convex Optimization

We present a definition of symmetric primal-dual algorithms for convex optimization problems expressed in the conic form. After describing a generalization of the υ-space approach for such optimization problems, we show that a symmetric υ-space approach can be developed for a convex optimization problem in the conic form if and only if the underlying cone is homogeneous and self-dual. We provide an alternative definition of self-scaled barriers and then conclude with a discussion of the scalings of the variables which keep the underlying convex cone invariant.

[1]  Yurii Nesterov,et al.  Primal-Dual Methods and Infeasibility Detectors for Nonlinear Programming Problems , 1996 .

[2]  Oscar S. Rothaus Domains of Positivity , 1960 .

[3]  Shuzhong Zhang,et al.  Symmetric primal-dual path-following algorithms for semidefinite programming , 1999 .

[4]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[5]  O. Rothaus Domains of Positivity , 1958 .

[6]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[7]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[8]  Shinji Mizuno,et al.  On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming , 1993, Math. Oper. Res..

[9]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[10]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..

[11]  Shinji Hara,et al.  Interior Point Methods for the Monotone Linear Complementarity Problem in Symmetric Matrices , 1995 .

[12]  Shuzhong Zhang,et al.  Duality and Self-Duality for Conic Convex Programming , 1996 .

[13]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[14]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[15]  L OvertonMichael,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming , 1998 .

[16]  N. S. Barnett,et al.  Private communication , 1969 .

[17]  Osman Güler,et al.  Barrier Functions in Interior Point Methods , 1996, Math. Oper. Res..

[18]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[19]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[20]  M. Kojima,et al.  A primal-dual interior point algorithm for linear programming , 1988 .

[21]  Kim-Chuan Toh,et al.  On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..

[22]  Shinji Mizuno,et al.  An $$O(\sqrt n L)$$ iteration potential reduction algorithm for linear complementarity problems , 1991, Math. Program..

[23]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[24]  Levent Tunçel,et al.  Characterization of the barrier parameter of homogeneous convex cones , 1998, Math. Program..

[25]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..