Fluvial features on Titan: Insights from morphology and modeling

Fluvial features on Titan have been identified in synthetic aperture radar (SAR) data taken during spacecraft flybys by the Cassini Titan Radar Mapper (RADAR) and in Descent Imager/Spectral Radiometer (DISR) images taken during descent of the Huygens probe to the surface. Interpretations using terrestrial analogs and process mechanics extend our perspective on fluvial geomorphology to another world and offer insight into their formative processes. At the landscape scale, the varied morphologies of Titan’s fluvial networks imply a variety of mechanical controls, including structural influence, on channelized flows. At the reach scale, the various morphologies of individual fluvial features, implying a broad range of fluvial processes, suggest that (paleo-)flows did not occupy the entire observed width of the features. DISR images provide a spatially limited view of uplands dissected by valley networks, also likely formed by overland flows, which are not visible in lower-resolution SAR data. This high-resolution snapshot suggests that some fluvial features observed in SAR data may be river valleys rather than channels, and that uplands elsewhere on Titan may also have fine-scale fluvial dissection that is not resolved in SAR data. Radar-bright terrain with crenulated bright and dark bands is hypothesized here to be a signature of fine-scale fluvial dissection. Fluvial deposition is inferred to occur in braided channels, in (paleo)lake basins, and on SAR-dark plains, and DISR images at the surface indicate the presence of fluvial sediment. Flow sufficient to move sediment is inferred from observations and modeling of atmospheric processes, which support the inference from surface morphology of precipitation-fed fluvial processes. With material properties appropriate for Titan, terrestrial hydraulic equations are applicable to flow on Titan for fully turbulent flow and rough boundaries. For low-Reynolds-number flow over smooth boundaries, however, knowledge of fluid kinematic viscosity is necessary. Sediment movement and bed form development should occur at lower bed shear stress on Titan than on Earth. Scaling bedrock erosion, however, is hampered by uncertainties regarding Titan material properties. Overall, observations of Titan point to a world pervasively influenced by fluvial processes, for which appropriate terrestrial analogs and formulations may provide insight.

[1]  K. Whipple,et al.  Beyond Power: Bedrock River Incision Process and Form , 2013 .

[2]  D. Montgomery,et al.  Channel-reach morphology in mountain drainage basins , 1997 .

[3]  J. Baas,et al.  The development of small scale bedforms in tidal environments: an empirical model for unsteady flow and its applications , 1994 .

[4]  H. Keller,et al.  The properties of Titan's surface at the Huygens landing site from DISR observations , 2008 .

[5]  Jean-Pierre Lebreton,et al.  The Cassini/Huygens Mission to the Saturnian System , 1999 .

[6]  V. Baker Stream-channel response to floods, with examples from central Texas , 1977 .

[7]  A. Bouchez,et al.  Direct detection of variable tropospheric clouds near Titan's south pole , 2002, Nature.

[8]  Bo-Cai Gao,et al.  A global water vapor data set obtained by merging the SSMI and MODIS data , 2004 .

[9]  Christopher P. McKay,et al.  Rain and hail can reach the surface of Titan , 2008 .

[10]  R. Jaumann,et al.  Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan , 2005, Nature.

[11]  J. Lunine,et al.  Erosion on Titan: Past and Present , 1996 .

[12]  R. Hueso,et al.  Methane storms on Saturn's moon Titan , 2006, Nature.

[13]  D. Hunten,et al.  The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe , 2005, Nature.

[14]  Athena Coustenis,et al.  TITAN: EXPLORING AN EARTHLIKE WORLD , 2008 .

[15]  C P McKay,et al.  Photochemically Driven Collapse of Titan's Atmosphere , 1997, Science.

[16]  R. Lorenz,et al.  Penetrometry of granular and moist planetary surface materials: Application to the Huygens landing site on Titan , 2010 .

[17]  R. Kirk,et al.  Transient surface liquid in Titan’s polar regions from Cassini , 2011 .

[18]  R. Lorenz,et al.  Titan's damp ground: Constraints on Titan surface thermal properties from the temperature evolution of the Huygens GCMS inlet , 2006 .

[19]  S. Schumm EVOLUTION OF DRAINAGE SYSTEMS AND SLOPES IN BADLANDS AT PERTH AMBOY, NEW JERSEY , 1956 .

[20]  C. Sotin,et al.  Global circulation as the main source of cloud activity on Titan , 2009, Nature.

[21]  M. Allen,et al.  Photochemistry of the atmosphere of Titan: comparison between model and observations. , 1984, The Astrophysical journal. Supplement series.

[22]  W. Dietrich,et al.  Formation of Box Canyon, Idaho, by Megaflood: Implications for Seepage Erosion on Earth and Mars , 2008, Science.

[23]  Angioletta Coradini,et al.  Photometric changes on Saturn's Titan: Evidence for active cryovolcanism , 2009 .

[24]  K. Whipple,et al.  Can springs cut canyons into rock , 2006 .

[25]  D. Knighton Fluvial Forms and Processes: A New Perspective , 1998 .

[26]  Rosaly M. C. Lopes,et al.  Dunes on Titan observed by Cassini Radar , 2008 .

[27]  R. Kirk,et al.  Rain, winds and haze during the Huygens probe's descent to Titan's surface , 2005, Nature.

[28]  Randolph L. Kirk,et al.  Distribution and interplay of geologic processes on Titan from Cassini radar data , 2010 .

[29]  T. Johnson,et al.  Channel precipitation dynamics in a forested Pennsylvania headwater catchment (USA) , 1999 .

[30]  I. Lunt,et al.  Depositional Models of Braided Rivers , 2009 .

[31]  R. Bagnold An approach to the sediment transport problem from general physics , 1966 .

[32]  J. Lunine,et al.  Convective plumes and the scarcity of Titan's clouds , 2005 .

[33]  J. Nikuradse Stromungsgesetze in rauhen Rohren , 1933 .

[34]  Kenneth S Edgett,et al.  Evidence for Persistent Flow and Aqueous Sedimentation on Early Mars , 2003, Science.

[35]  R. Clark,et al.  Composition of Titan's Surface , 2009 .

[36]  C. McKay,et al.  Methane rain on Titan , 1988 .

[37]  R. D. Black,et al.  Partial Area Contributions to Storm Runoff in a Small New England Watershed , 1970 .

[38]  C. Sotin,et al.  Titan’s cloud seasonal activity from winter to spring with Cassini/VIMS , 2011 .

[39]  E. Barth,et al.  Convective cloud heights as a diagnostic for methane environment on Titan , 2010 .

[40]  John G. McPherson,et al.  Alluvial fans and their natural distinction from rivers based on morphology , 1995 .

[41]  Rosaly M. C. Lopes,et al.  Active shoreline of Ontario Lacus, Titan: A morphological study of the lake and its surroundings , 2010 .

[42]  Randolph L. Kirk,et al.  Hydrocarbon lakes on Titan: Distribution and interaction with a porous regolith , 2008 .

[43]  F. Ferri,et al.  Methane drizzle on Titan , 2006, Nature.

[44]  Peter Grindrod,et al.  Ammonium sulfate on Titan: Possible origin and role in cryovolcanism , 2007 .

[45]  Mary Hesse,et al.  Models and analogies in science , 1970 .

[46]  K. Whipple BEDROCK RIVERS AND THE GEOMORPHOLOGY OF ACTIVE OROGENS , 2004 .

[47]  J. Lavé,et al.  Changes of bedload characteristics along the Marsyandi River (central Nepal): Implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, and denudation in active orogenic belts , 2006 .

[48]  M. Gibling,et al.  Paleozoic vegetation and the Siluro-Devonian rise of fluvial lateral accretion sets , 2010 .

[49]  J. Southard,et al.  Bed Configurations in Steady Unidirectional Water Flows. Part 3. Effects of Temperature and Gravity , 1990 .

[50]  K. Whipple,et al.  Amplified erosion above waterfalls and oversteepened bedrock reaches , 2005 .

[51]  M. Tomasko,et al.  New laboratory measurements of CH4 in Titan's conditions and a reanalysis of the DISR near-surface spectra at the Huygens landing site , 2008 .

[52]  M. Hartung,et al.  Observations of a stationary mid-latitude cloud system on Titan , 2010, 1003.2657.

[53]  P. Komar Modes of sediment transport in channelized water flows with ramifications to the erosion of the Martian outflow channels , 1980 .

[54]  V. T. Chow Open-channel hydraulics , 1959 .

[55]  C. Lyell Principles of Geology; Being an Attempt to Explain the Former Changes of the Earth's Surface, by Reference to Causes Now in Operation , 2009 .

[56]  Michael E. Brown,et al.  A large cloud outburst at Titan’s south pole , 2006 .

[57]  Victor R. Baker,et al.  Channels and valleys on Mars , 1983 .

[58]  P. Klingeman,et al.  Bedload and Size Distribution in Paved Gravel-Bed Streams , 1983 .

[59]  Randolph L. Kirk,et al.  Fluvial channels on Titan: Initial Cassini RADAR observations , 2008 .

[60]  R. Kirk,et al.  Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins , 2011 .

[61]  I. de Pater,et al.  Dynamics of an ice continent on Titan , 2004 .

[62]  R. Kirk,et al.  The lakes of Titan , 2006, Nature.

[63]  W. Dietrich,et al.  The role of sediment in controlling steady-state bedrock channel slope : Implications of the saltation-abrasion incision model , 2006 .

[64]  G. Tucker,et al.  Dynamics of the stream‐power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs , 1999 .

[65]  Inez Y. Fung,et al.  Valley formation and methane precipitation rates on Titan , 2006 .

[66]  J. H. Berg,et al.  A New Bedform Stability Diagram, with Emphasis on the Transition of Ripples to Plane Bed in Flows over Fine Sand and Silt , 2009 .

[67]  B. Hapke,et al.  Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity , 2009 .

[68]  H. Zebker,et al.  Radar-bright channels on Titan , 2009 .

[69]  L. Rijn Sediment Transport, Part II: Suspended Load Transport , 1984 .

[70]  William E. Dietrich,et al.  Martian Layered Fluvial Deposits: Implications for Noachian Climate Scenarios , 2003 .

[71]  C. Kohlhase,et al.  The Cassini Mission to Saturn and Titan. , 1997 .

[72]  E. Barth,et al.  TRAMS: A new dynamic cloud model for Titan's methane clouds , 2007 .

[73]  S. J. WHITE,et al.  Plane Bed Thresholds of Fine Grained Sediments , 1970, Nature.

[74]  C. McKay,et al.  Coupled atmosphere-ocean models of Titan's past. , 1993, Icarus.

[75]  H. Schlichting Boundary Layer Theory , 1955 .

[76]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .

[77]  W. Dietrich,et al.  The persistence of waterfalls in fractured rock , 2009 .

[78]  R. Lorenz,et al.  Titan surface mechanical properties from the SSP ACC–I record of the impact deceleration of the Huygens probe , 2009 .

[79]  Richard Turton,et al.  An explicit relationship to predict spherical particle terminal velocity , 1987 .

[80]  R. Signorell,et al.  METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'S CLOUDS , 2010 .

[81]  E. Barth Cloud formation along mountain ridges on Titan , 2010 .

[82]  T. Dunne Formation and controls of channel networks , 1980 .

[83]  Günter Kargl,et al.  A soft solid surface on Titan as revealed by the Huygens Surface Science Package , 2005, Nature.

[84]  R. Lorenz,et al.  Sediment transport by liquid surficial flow: Application to Titan , 2006 .

[85]  Robert T. Pappalardo,et al.  Titan: An exogenic world? , 2011 .

[86]  R. Kirk,et al.  Hypsometry of Titan , 2011 .

[87]  G. Parker Surface-based bedload transport relation for gravel rivers , 1990 .

[88]  Rosaly M. C. Lopes,et al.  Near‐infrared spectral mapping of Titan's mountains and channels , 2007 .

[89]  P. Wilcock,et al.  Surface-based Transport Model for Mixed-Size Sediment , 2003 .

[90]  R. H. Brown,et al.  The identification of liquid ethane in Titan’s Ontario Lacus , 2008, Nature.

[91]  M. Ádámkovics,et al.  Discovery of Fog at the South Pole of Titan , 2009, 0908.4087.

[92]  H. Keller,et al.  The reflectance spectrum of Titan's surface at the Huygens landing site determined by the Descent Imager/Spectral Radiometer , 2008, 1702.00653.

[93]  C. Sotin,et al.  Titan's fluvial valleys: Morphology, distribution, and spectral properties , 2012 .

[94]  William R. Brownlie,et al.  Flow Depth in Sand-Bed Channels , 1983 .

[95]  R. Horton The Rôle of infiltration in the hydrologic cycle , 1933 .

[96]  A. D. Howard Drainage Analysis in Geologic Interpretation: A Summation , 1967 .

[97]  M. Hartung,et al.  Evidence for condensed-phase methane enhancement over Xanadu on Titan , 2009, 0907.2255.

[98]  R. C. Ward,et al.  On the response to precipitation of headwater streams in humid areas , 1984 .

[99]  L. Sklar,et al.  Influence of temperature, composition, and grain size on the tensile failure of water ice: Implications for erosion on Titan , 2012 .

[100]  Rosaly M. C. Lopes,et al.  Geology and surface processes on titan , 2009 .

[101]  E. Barth,et al.  Methane, ethane, and mixed clouds in Titan's atmosphere : Properties derived from microphysical modeling , 2006 .

[102]  C. McKay,et al.  Three-dimensional modeling of the tropospheric methane cycle on Titan , 2001 .

[103]  F. Paganelli,et al.  Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: Evidence for geologically recent cryovolcanic activity , 2009 .

[104]  R. H. Brown,et al.  The Cassini Visual And Infrared Mapping Spectrometer (Vims) Investigation , 2004 .

[105]  Jonathan L. Mitchell,et al.  The drying of Titan's dunes: Titan's methane hydrology and its impact on atmospheric circulation , 2008 .

[106]  Bonnie J. Buratti,et al.  Fluvial erosion and post-erosional processes on Titan , 2008 .

[107]  Charles Elachi,et al.  Titan's surface at 2.2-cm wavelength imaged by the Cassini RADAR radiometer: Calibration and first results , 2009 .

[108]  C. McKay,et al.  Titan's Clouds from Gemini and Keck Adaptive Optics Imaging , 2002 .

[109]  T. Tokano Impact of seas/lakes on polar meteorology of Titan: Simulation by a coupled GCM-Sea model , 2009 .

[110]  J. Burns,et al.  Cassini Imaging Science: Instrument Characteristics And Anticipated Scientific Investigations At Saturn , 2004 .

[111]  T. Maxwell,et al.  Channels in Martian valley networks: Discharge and runoff production , 2005 .

[112]  Jonathan L. Mitchell,et al.  AVIATR—Aerial Vehicle for In-situ and Airborne Titan Reconnaissance , 2010 .

[113]  W. Dietrich Settling velocity of natural particles , 1982 .

[114]  F. Paganelli,et al.  Titan Radar Mapper observations from Cassini's T3 fly-by , 2006, Nature.

[115]  J. Moore,et al.  Are the basins of Titan's Hotei Regio and Tui Regio sites of former low latitude seas? , 2010 .

[116]  W. Dietrich,et al.  A mechanistic model for river incision into bedrock by saltating bed load , 2004 .

[117]  W. Dietrich,et al.  Formation of amphitheater-headed valleys by waterfall erosion after large-scale slumping on Hawai'i , 2007 .

[118]  Stanley A. Schumm,et al.  To interpret the earth : ten ways to be wrong , 1992 .

[119]  R. Kirk,et al.  Radar: The Cassini Titan Radar Mapper , 2004 .

[120]  Peter R. Wilcock,et al.  Critical Shear Stress of Natural Sediments , 1993 .

[121]  C. Sotin,et al.  surface dissolution/precipitation model for the development of lakes on Titan, based on an arid terrestrial analogue : the pans and calcretes of Etosha (Namibia) , 2008 .

[122]  Kelin X. Whipple,et al.  River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion and cavitation , 2000 .

[123]  I. de Pater,et al.  Widespread Morning Drizzle on Titan , 2007, Science.

[124]  C. Twidale River patterns and their meaning , 2004 .

[125]  Ralph D. Lorenz,et al.  Hydrocarbon lakes on Titan , 2007 .

[126]  W. Dietrich,et al.  Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers , 2007 .

[127]  Roberto Orosei,et al.  Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper , 2007 .

[128]  S. Schumm,et al.  A ground-water sapping landscape in the Florida Panhandle , 1995 .

[129]  Charles Ichoku,et al.  A numerical approach to the analysis and classification of channel network patterns , 1994 .

[130]  Precipitation Climatology on Titan , 2011, Science.

[131]  W. Johnson,et al.  Cassini RADAR constraint on Titan's winter polar precipitation , 2008 .

[132]  J. Southard Experimental Determination of Bed-Form Stability , 1991 .

[133]  R. D. Lorenz,et al.  Rapid and Extensive Surface Changes Near Titan’s Equator: Evidence of April Showers , 2011, Science.

[134]  Martin C. Miller,et al.  Threshold of sediment motion under unidirectional currents , 1977 .

[135]  J. Emery,et al.  Inverted fluvial features in the Aeolis/Zephyria Plana region, Mars: Formation mechanism and initial paleodischarge estimates , 2010 .

[136]  D. Burr,et al.  Fluvial network analysis on Titan: Evidence for subsurface structures and west‐to‐east wind flow, southwestern Xanadu , 2009 .

[137]  F. Hourdin,et al.  The Latitudinal Distribution of Clouds on Titan , 2006, Science.

[138]  J. Southard,et al.  Bed configuration in steady unidirectional water flows; Part 2, Synthesis of flume data , 1990 .

[139]  William E. Dietrich,et al.  Erosion of steepland valleys by debris flows , 2006 .

[140]  R. Kirk,et al.  Bathymetry and absorptivity of Titan's Ontario Lacus , 2010 .

[141]  W. Graf Fluvial Processes In Dryland Rivers , 1988 .

[142]  William E. Dietrich,et al.  Modeling fluvial erosion on regional to continental scales , 1994 .

[143]  J. Smith,et al.  Calculations of the critical shear stress for motion of uniform and heterogeneous sediments , 1987 .

[144]  Paul Duval,et al.  Creep and Fracture of Ice: Acknowledgements , 2009 .

[145]  Trent M. Hare,et al.  Topography and geomorphology of the Huygens landing site on Titan , 2007 .

[146]  Jonathan L. Mitchell,et al.  Locally enhanced precipitation organized by planetary-scale waves on Titan , 2011 .

[147]  Rosaly M. C. Lopes,et al.  Regional geomorphology and history of Titan's Xanadu province , 2011 .

[148]  G. Parker Selective Sorting and Abrasion of River Gravel. II: Applications , 1991 .

[149]  Rosaly M. C. Lopes,et al.  Mountains on Titan observed by Cassini Radar , 2006 .

[150]  G. Dury Attainable standards of accuracy in the retrodiction of palaeodischarge from channel dimensions , 1985 .

[151]  W. R. Thompson,et al.  Optical properties of poly-HCN and their astronomical applications. , 1994, Canadian journal of chemistry.

[152]  J. L. Hall,et al.  Detection of daily clouds on Titan. , 2000, Science.

[153]  R. Horton EROSIONAL DEVELOPMENT OF STREAMS AND THEIR DRAINAGE BASINS; HYDROPHYSICAL APPROACH TO QUANTITATIVE MORPHOLOGY , 1945 .

[154]  W. Dietrich,et al.  Is the critical Shields stress for incipient sediment motion dependent on channel‐bed slope? , 2007 .

[155]  J. Perron,et al.  Equilibrium form of horizontally retreating, soil-mantled hillslopes: Model development and application to a groundwater sapping landscape , 2012 .

[156]  G. Collins Relative rates of fluvial bedrock incision on Titan and Earth , 2005 .

[157]  Jonathan L. Mitchell,et al.  The dynamics behind Titan's methane clouds , 2006, Proceedings of the National Academy of Sciences.

[158]  W. Dietrich,et al.  Sediment and rock strength controls on river incision into bedrock , 2001 .

[159]  W. Dietrich,et al.  A model for fluvial bedrock incision by impacting suspended and bed load sediment , 2008 .

[160]  Randolph L. Kirk,et al.  Correlations between Cassini VIMS spectra and RADAR SAR images: Implications for Titan's surface composition and the character of the Huygens Probe Landing Site , 2007 .

[161]  Van Rijn,et al.  Closure of "Sediment Transport, Part III: Bed Forms and Alluvial Roughness" , 1984 .

[162]  R. Lorenz The life, death and afterlife of a raindrop on Titan , 1993 .

[163]  W. T. Pecora,et al.  Principles of underfit streams , 1964 .

[164]  J. Perron,et al.  Estimating erosional exhumation on Titan from drainage network morphology , 2012 .

[165]  A. McEwen,et al.  Cassini imaging of Titan's high‐latitude lakes, clouds, and south‐polar surface changes , 2009 .

[166]  T. Brennand,et al.  Pervasive aqueous paleoflow features in the Aeolis/Zephyria Plana region, Mars , 2009 .

[167]  D. Rubin,et al.  Multiple origins of linear dunes on Earth and Titan , 2009 .

[168]  M. Gibling,et al.  Cambrian to Devonian evolution of alluvial systems: The sedimentological impact of the earliest land plants , 2010 .

[169]  Stefan E. Schröder,et al.  DISR imaging and the geometry of the descent of the Huygens probe within Titan's atmosphere , 2007 .

[170]  C. McKay,et al.  High-Altitude Production of Titan's Aerosols , 2009 .

[171]  R. Lorenz,et al.  Work output of planetary atmospheric engines: dissipation in clouds and rain , 2002 .

[172]  V. Kelessidis An explicit equation for the terminal velocity of solid spheres falling in pseudoplastic liquids , 2004 .

[173]  M. Tomasko,et al.  Rain and dewdrops on titan based on in situ imaging , 2009 .

[174]  Alan D. Howard,et al.  Channel changes in badlands , 1983 .

[175]  A. Howard Optimal Angles of Stream Junction: Geometric, Stability to Capture, and Minimum Power Criteria , 1971 .

[176]  A. Shields,et al.  Application of similarity principles and turbulence research to bed-load movement , 1936 .

[177]  F. Flasar,et al.  Titan's atmosphere: temperature and dynamics , 1981, Nature.

[178]  R. Kirk,et al.  Cassini Radar Views the Surface of Titan , 2005, Science.

[179]  C. Sotin,et al.  Spectroscopy, morphometry, and photoclinometry of Titan's dunefields from Cassini/VIMS , 2008 .

[180]  Bonnie J. Buratti,et al.  Global-scale surface spectral variations on Titan seen from Cassini/VIMS , 2007 .

[181]  Ralph D. Lorenz,et al.  The Weather on Titan , 2000, Science.

[182]  Jessica E. Roberts,et al.  Clouds on Titan during the Cassini prime mission: A complete analysis of the VIMS data , 2010 .

[183]  M. W. Evans,et al.  Imaging of Titan from the Cassini spacecraft , 2005, Nature.