Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity

We consider an extension of the traffic flow model proposed by Lighthill, Whitham and Richards, in which the mean velocity depends on a weighted mean of the downstream traffic density. We prove well-posedness and a regularity result for entropy weak solutions of the corresponding Cauchy problem, and use a finite volume central scheme to compute approximate solutions. We perform numerical tests to illustrate the theoretical results and to investigate the limit as the convolution kernel tends to a Dirac delta function.

[1]  Fabio Morbidi,et al.  Grenoble Traffic Lab: An Experimental Platform for Advanced Traffic Monitoring and Forecasting [Applications of Control] , 2015, IEEE Control Systems.

[2]  P. I. Richards Shock Waves on the Highway , 1956 .

[3]  Martin Treiber,et al.  Traffic Flow Dynamics , 2013 .

[4]  Nicolas Vauchelet,et al.  Numerical Methods for One-Dimensional Aggregation Equations , 2015, SIAM J. Numer. Anal..

[5]  Mauro Garavello,et al.  Traffic Flow on Networks , 2006 .

[6]  Michael Herty,et al.  Coupling of non-local driving behaviour with fundamental diagrams , 2012 .

[7]  Sebastien Blandin,et al.  Well-posedness of a conservation law with non-local flux arising in traffic flow modeling , 2016, Numerische Mathematik.

[8]  Dong Li,et al.  Shock formation in a traffic flow model with Arrhenius look-ahead dynamics , 2011, Networks Heterog. Media.

[9]  Alexander Kurganov,et al.  Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics , 2009, Networks Heterog. Media.

[10]  Rinaldo M. Colombo,et al.  On the Numerical Integration of Scalar Nonlocal Conservation Laws , 2015 .

[11]  Knut-Andreas Lie,et al.  On the Artificial Compression Method for Second-Order Nonoscillatory Central Difference Schemes for Systems of Conservation Laws , 2002, SIAM J. Sci. Comput..

[12]  Raimund Bürger,et al.  On nonlocal conservation laws modelling sedimentation , 2011 .

[13]  R. Colombo,et al.  Nonlocal Crowd Dynamics Models for Several Populations , 2011, 1110.3596.

[14]  M J Lighthill,et al.  ON KINEMATIC WAVES.. , 1955 .

[15]  Magali Lécureux-Mercier,et al.  Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow , 2011, 1112.4132.

[16]  M. Herty,et al.  Control of the Continuity Equation with a Non Local Flow , 2009, 0902.2623.

[17]  Simone Göttlich,et al.  Modeling, simulation and validation of material flow on conveyor belts , 2014 .

[18]  W. Shen,et al.  AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW , 2011, 1101.2131.

[19]  Rinaldo M. Colombo,et al.  Nonlocal Systems of Conservation Laws in Several Space Dimensions , 2015, SIAM J. Numer. Anal..

[20]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  Alexandros Sopasakis,et al.  Stochastic Modeling and Simulation of Traffic Flow: Asymmetric Single Exclusion Process with Arrhenius look-ahead dynamics , 2006, SIAM J. Appl. Math..

[22]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[23]  Sheila Scialanga,et al.  The Lighthill-Whitham- Richards traffic flow model with non-local velocity: analytical study and numerical results , 2015 .

[24]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[25]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[26]  R. Colombo,et al.  A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC , 2011, 1104.2985.

[27]  Alexandre M. Bayen,et al.  Incorporation of Lagrangian measurements in freeway traffic state estimation , 2010 .