The fréchet distance revisited and extended
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] Jirí Matousek,et al. Randomized Optimal Algorithm for Slope Selection , 1991, Inf. Process. Lett..
[3] Helmut Alt,et al. Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..
[4] Kim-Fung Man,et al. Parallel Genetic-Based Hybrid Pattern Matching Algorithm for Isolated Word Recognition , 1998, Int. J. Pattern Recognit. Artif. Intell..
[5] Pietro Perona,et al. Continuous dynamic time warping for translation-invariant curve alignment with applications to signature verification , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[6] Eamonn J. Keogh,et al. Scaling up Dynamic Time Warping to Massive Dataset , 1999, PKDD.
[7] M. Godau. On the complexity of measuring the similarity between geometric objects in higher dimensions , 1999 .
[8] Russ Bubley,et al. Randomized algorithms , 1995, CSUR.
[9] Remco C. Veltkamp,et al. Parametric search made practical , 2002, SCG '02.
[10] Günter Rote,et al. Matching planar maps , 2003, SODA '03.
[11] Günter Rote,et al. On the Fréchet distance of a set of curves , 2004, CCCG.
[12] Sang-Wook Kim,et al. Optimization of subsequence matching under time warping in time-series databases , 2005, SAC '05.
[13] Dieter Pfoser,et al. On Map-Matching Vehicle Tracking Data , 2005, VLDB.
[14] Dieter Pfoser,et al. Addressing the Need for Map-Matching Speed: Localizing Global Curve-Matching Algorithms , 2006, 18th International Conference on Scientific and Statistical Database Management (SSDBM'06).
[15] Chiranjib Bhattacharyya,et al. Fréchet Distance Based Approach for Searching Online Handwritten Documents , 2007, Ninth International Conference on Document Analysis and Recognition (ICDAR 2007).
[16] How Difficult is it to Walk the Dog ? , 2007 .
[17] Joachim Gudmundsson,et al. Detecting Commuting Patterns by Clustering Subtrajectories , 2008, Int. J. Comput. Geom. Appl..
[18] Atlas F. Cook,et al. Geodesic Fréchet distance inside a simple polygon , 2008, TALG.
[19] Joachim Gudmundsson,et al. Detecting single file movement , 2008, GIS '08.
[20] Sariel Har-Peled,et al. Approximating the Fréchet Distance for Realistic Curves in Near Linear Time , 2010, Discrete & Computational Geometry.
[21] Maike Buchin,et al. Can We Compute the Similarity between Surfaces? , 2007, Discret. Comput. Geom..
[22] Otfried Cheong,et al. Aligning Two Convex Figures to Minimize Area or Perimeter , 2010, Algorithmica.
[23] Kevin Buchin,et al. Fréchet Distance of Surfaces: Some Simple Hard Cases , 2010, ESA.
[24] Atlas F. Cook,et al. Geodesic Fréchet distance inside a simple polygon , 2010, TALG.
[25] Joachim Gudmundsson,et al. Detecting Commuting Patterns by Clustering Subtrajectories , 2011, Int. J. Comput. Geom. Appl..
[26] Jörg-Rüdiger Sack,et al. Improved Algorithms for Partial Curve Matching , 2011, ESA.
[27] Sariel Har-Peled,et al. The frechet distance revisited and extended , 2011, SoCG '11.
[28] Maarten Löffler,et al. Median Trajectories , 2010, Algorithmica.
[29] Jörg-Rüdiger Sack,et al. Improved Algorithms for Partial Curve Matching , 2013, Algorithmica.