The fréchet distance revisited and extended

Given two simplicial complexes in Rd and start and end vertices in each complex, we show how to compute curves (in each complex) between these vertices, such that the weak Fréchet distance between these curves is minimized. As a polygonal curve is a complex, this generalizes the regular notion of weak Fréchet distance between curves. We also generalize the algorithm to handle an input of k simplicial complexes. Using this new algorithm, we can solve a slew of new problems, from computing a mean curve for a given collection of curves to various motion planning problems. Additionally, we show that for the mean curve problem, when the k input curves are c-packed, one can (1+ϵ-approximate the mean curve in near-linear time, for fixed k and ϵ. Additionally, we present an algorithm for computing the strong Fréchet distance between two curves, which is simpler than previous algorithms and avoids using parametric search.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Jirí Matousek,et al.  Randomized Optimal Algorithm for Slope Selection , 1991, Inf. Process. Lett..

[3]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[4]  Kim-Fung Man,et al.  Parallel Genetic-Based Hybrid Pattern Matching Algorithm for Isolated Word Recognition , 1998, Int. J. Pattern Recognit. Artif. Intell..

[5]  Pietro Perona,et al.  Continuous dynamic time warping for translation-invariant curve alignment with applications to signature verification , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[6]  Eamonn J. Keogh,et al.  Scaling up Dynamic Time Warping to Massive Dataset , 1999, PKDD.

[7]  M. Godau On the complexity of measuring the similarity between geometric objects in higher dimensions , 1999 .

[8]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[9]  Remco C. Veltkamp,et al.  Parametric search made practical , 2002, SCG '02.

[10]  Günter Rote,et al.  Matching planar maps , 2003, SODA '03.

[11]  Günter Rote,et al.  On the Fréchet distance of a set of curves , 2004, CCCG.

[12]  Sang-Wook Kim,et al.  Optimization of subsequence matching under time warping in time-series databases , 2005, SAC '05.

[13]  Dieter Pfoser,et al.  On Map-Matching Vehicle Tracking Data , 2005, VLDB.

[14]  Dieter Pfoser,et al.  Addressing the Need for Map-Matching Speed: Localizing Global Curve-Matching Algorithms , 2006, 18th International Conference on Scientific and Statistical Database Management (SSDBM'06).

[15]  Chiranjib Bhattacharyya,et al.  Fréchet Distance Based Approach for Searching Online Handwritten Documents , 2007, Ninth International Conference on Document Analysis and Recognition (ICDAR 2007).

[16]  How Difficult is it to Walk the Dog ? , 2007 .

[17]  Joachim Gudmundsson,et al.  Detecting Commuting Patterns by Clustering Subtrajectories , 2008, Int. J. Comput. Geom. Appl..

[18]  Atlas F. Cook,et al.  Geodesic Fréchet distance inside a simple polygon , 2008, TALG.

[19]  Joachim Gudmundsson,et al.  Detecting single file movement , 2008, GIS '08.

[20]  Sariel Har-Peled,et al.  Approximating the Fréchet Distance for Realistic Curves in Near Linear Time , 2010, Discrete & Computational Geometry.

[21]  Maike Buchin,et al.  Can We Compute the Similarity between Surfaces? , 2007, Discret. Comput. Geom..

[22]  Otfried Cheong,et al.  Aligning Two Convex Figures to Minimize Area or Perimeter , 2010, Algorithmica.

[23]  Kevin Buchin,et al.  Fréchet Distance of Surfaces: Some Simple Hard Cases , 2010, ESA.

[24]  Atlas F. Cook,et al.  Geodesic Fréchet distance inside a simple polygon , 2010, TALG.

[25]  Joachim Gudmundsson,et al.  Detecting Commuting Patterns by Clustering Subtrajectories , 2011, Int. J. Comput. Geom. Appl..

[26]  Jörg-Rüdiger Sack,et al.  Improved Algorithms for Partial Curve Matching , 2011, ESA.

[27]  Sariel Har-Peled,et al.  The frechet distance revisited and extended , 2011, SoCG '11.

[28]  Maarten Löffler,et al.  Median Trajectories , 2010, Algorithmica.

[29]  Jörg-Rüdiger Sack,et al.  Improved Algorithms for Partial Curve Matching , 2013, Algorithmica.