Single-molecule studies of viral DNA packaging.

Many double-stranded DNA bacteriophages and viruses use specialized ATP-driven molecular machines to package their genomes into tightly confined procapsid shells. Over the last decade, single-molecule approaches - and in particular, optical tweezers - have made key contributions to our understanding of this remarkable process. In this chapter, we review these advances and the insights they have provided on the packaging mechanisms of three bacteriophages: φ 29, λ, and T4.

[1]  L. Black,et al.  Modulation of the packaging reaction of bacteriophage t4 terminase by DNA structure. , 2008, Journal of molecular biology.

[2]  S. Casjens,et al.  Bacteriophage P22 portal protein is part of the gauge that regulates packing density of intravirion DNA. , 1992, Journal of molecular biology.

[3]  W. Parris,et al.  Late stages in bacteriophage λ head morphogenesis: In vitro studies on the action of the bacteriophage λ D-gene and W-gene products , 1988 .

[4]  C. Catalano,et al.  Biochemical characterization of bacteriophage lambda genome packaging in vitro. , 2003, Virology.

[5]  W. Greenleaf,et al.  Direct observation of base-pair stepping by RNA polymerase , 2005, Nature.

[6]  V. Rao,et al.  Sequence analysis of bacteriophage T4 DNA packaging/terminase genes 16 and 17 reveals a common ATPase center in the large subunit of viral terminases. , 2002, Nucleic acids research.

[7]  Michael G Rossmann,et al.  Molecular architecture of the prolate head of bacteriophage T4. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Briana M. Burton,et al.  The ATPase SpoIIIE Transports DNA across Fused Septal Membranes during Sporulation in Bacillus subtilis , 2007, Cell.

[9]  M. Emmett,et al.  Functional visualization of viral molecular motor by hydrogen-deuterium exchange reveals transient states , 2005, Nature Structural &Molecular Biology.

[10]  Rob Phillips,et al.  Mechanics of DNA packaging in viruses , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Peixuan Guo,et al.  Prohead and DNA-gp3-dependent ATPase activity of the DNA packaging protein gp16 of bacteriophage phi 29. , 1987, Journal of molecular biology.

[12]  Davide Marenduzzo,et al.  Thermodynamics of DNA packaging inside a viral capsid: the role of DNA intrinsic thickness. , 2003, Journal of molecular biology.

[13]  Martin Phillips,et al.  Measurements of DNA lengths remaining in a viral capsid after osmotically suppressed partial ejection. , 2005, Biophysical journal.

[14]  Thomas T. Perkins,et al.  Optical traps for single molecule biophysics: a primer , 2009 .

[15]  M. Feiss,et al.  Genetic evidence that recognition of cosQ, the signal for termination of phage lambda DNA packaging, depends on the extent of head filling. , 1997, Genetics.

[16]  Derek N. Fuller,et al.  DNA as a metrology standard for length and force measurements with optical tweezers. , 2006, Biophysical journal.

[17]  C. Catalano,et al.  Packaging of a unit-length viral genome: the role of nucleotides and the gpD decoration protein in stable nucleocapsid assembly in bacteriophage lambda. , 2008, Journal of molecular biology.

[18]  Detlef D. Leipe,et al.  Evolutionary history and higher order classification of AAA+ ATPases. , 2004, Journal of structural biology.

[19]  J M Yeomans,et al.  Polymer packaging and ejection in viral capsids: shape matters. , 2006, Physical review letters.

[20]  R. Hendrix,et al.  Symmetry mismatch and DNA packaging in large bacteriophages. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[21]  W. Greenleaf,et al.  High-resolution, single-molecule measurements of biomolecular motion. , 2007, Annual review of biophysics and biomolecular structure.

[22]  L. Black DNA packaging in dsDNA bacteriophages. , 1989, Annual review of microbiology.

[23]  V. Rao,et al.  The DNA translocating ATPase of bacteriophage T4 packaging motor. , 2006, Journal of molecular biology.

[24]  N. Tanner,et al.  The newly discovered Q motif of DEAD‐box RNA helicases regulates RNA‐binding and helicase activity , 2004, The EMBO journal.

[25]  Michael G Rossmann,et al.  The structure of the ATPase that powers DNA packaging into bacteriophage T4 procapsids. , 2007, Molecular cell.

[26]  J. Mullaney,et al.  Portal fusion protein constraints on function in DNA packaging of bacteriophage T4 , 2006, Molecular microbiology.

[27]  T. Odijk,et al.  Hexagonally packed DNA within bacteriophage T7 stabilized by curvature stress. , 1998, Biophysical journal.

[28]  Joseph R Lakowicz,et al.  Dynamics of the T4 Bacteriophage DNA Packasome Motor , 2011, The Journal of Biological Chemistry.

[29]  Paul Grayson,et al.  The effect of genome length on ejection forces in bacteriophage lambda. , 2005, Virology.

[30]  C. Catalano Viral Genome Packaging Machines , 2005, Viral Genome Packaging Machines: Genetics, Structure, and Mechanism.

[31]  M. Feiss,et al.  Assembly of bacteriophage lambda terminase into a viral DNA maturation and packaging machine. , 2006, Biochemistry.

[32]  T. Dokland,et al.  Structural transitions during maturation of bacteriophage lambda capsids. , 1993, Journal of molecular biology.

[33]  Rob Phillips,et al.  Forces during bacteriophage DNA packaging and ejection. , 2004, Biophysical journal.

[34]  J. Spudich,et al.  Single myosin molecule mechanics: piconewton forces and nanometre steps , 1994, Nature.

[35]  Edward S. Yeung,et al.  Differences in the chemical reactivity of individual molecules of an enzyme , 1995, Nature.

[36]  S. Quake,et al.  Relaxation of a single DNA molecule observed by optical microscopy. , 1994, Science.

[37]  Derek N. Fuller,et al.  Ionic effects on viral DNA packaging and portal motor function in bacteriophage φ29 , 2007, Proceedings of the National Academy of Sciences.

[38]  Carlos Bustamante,et al.  Optical-trap force transducer that operates by direct measurement of light momentum. , 2003, Methods in enzymology.

[39]  S. Smith,et al.  Single-molecule studies of DNA mechanics. , 2000, Current opinion in structural biology.

[40]  Jens Michaelis,et al.  Mechanism of Force Generation of a Viral DNA Packaging Motor , 2005, Cell.

[41]  Carlos Bustamante,et al.  Inter-Subunit Coordination in a Homomeric Ring-ATPase , 2009, Nature.

[42]  S. Harvey,et al.  Packaging double-helical DNA into viral capsids: structures, forces, and energetics. , 2008, Biophysical journal.

[43]  Yann R Chemla,et al.  Revealing the base pair stepping dynamics of nucleic acid motor proteins with optical traps. , 2010, Physical chemistry chemical physics : PCCP.

[44]  V. Rao,et al.  Functional Analysis of the Bacteriophage T4 DNA-packaging ATPase Motor* , 2006, Journal of Biological Chemistry.

[45]  A. Evilevitch,et al.  Measuring the Force Ejecting DNA from Phage , 2004 .

[46]  Kenneth H Downing,et al.  Three-dimensional architecture of the bacteriophage phi29 packaged genome and elucidation of its packaging process. , 2008, Virology.

[47]  Ignacio Tinoco,et al.  Determination of thermodynamics and kinetics of RNA reactions by force , 2006, Quarterly Reviews of Biophysics.

[48]  M. Tasaka,et al.  DNA packaging ATPase of bacteriophage T3. , 1993, Virology.

[49]  George Oster,et al.  Rotary protein motors. , 2003, Trends in cell biology.

[50]  R. Weisberg,et al.  Little Lambda, Who Made Thee? , 2004, Microbiology and Molecular Biology Reviews.

[51]  S. Grimes,et al.  The bacteriophage phi29 packaging proteins supercoil the DNA ends. , 1997, Journal of molecular biology.

[52]  Rachel Millin,et al.  DNA looping by two-site restriction endonucleases: heterogeneous probability distributions for loop size and unbinding force , 2006, Nucleic acids research.

[53]  V. Rao,et al.  Novel and deviant Walker A ATP-binding motifs in bacteriophage large terminase-DNA packaging proteins. , 2004, Virology.

[54]  S. Grimes,et al.  Bacteriophage φ29 DNA packaging , 2002 .

[55]  L. Black,et al.  Isolation and Characterization of T4 Bacteriophage gp17 Terminase, a Large Subunit Multimer with Enhanced ATPase Activity* , 2003, The Journal of Biological Chemistry.

[56]  C. Bustamante,et al.  Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules , 1996, Science.

[57]  Bonnie Draper,et al.  An ATP hydrolysis sensor in the DNA packaging motor from bacteriophage T4 suggests an inchworm-type translocation mechanism. , 2007, Journal of molecular biology.

[58]  J. Lakowicz,et al.  Single-molecule and FRET fluorescence correlation spectroscopy analyses of phage DNA packaging: colocalization of packaged phage T4 DNA ends within the capsid. , 2010, Journal of molecular biology.

[59]  M. Feiss,et al.  The bacteriophage DNA packaging motor. , 2008, Annual review of genetics.

[60]  José L Carrascosa,et al.  Detailed architecture of a DNA translocating machine: the high-resolution structure of the bacteriophage phi29 connector particle. , 2002, Journal of molecular biology.

[61]  Michelle D. Wang,et al.  Stretching of single collapsed DNA molecules. , 2000, Biophysical journal.

[62]  N. Tanner,et al.  Motif III in superfamily 2 "helicases" helps convert the binding energy of ATP into a high-affinity RNA binding site in the yeast DEAD-box protein Ded1. , 2010, Journal of molecular biology.

[63]  John E. Johnson,et al.  Bacteriophage lambda stabilization by auxiliary protein gpD: timing, location, and mechanism of attachment determined by cryo-EM. , 2008, Structure.

[64]  Zhen‐Gang Wang,et al.  DNA packaging in bacteriophage: is twist important? , 2005, Biophysical journal.

[65]  Hui Zhang,et al.  Counting of six pRNAs of phi29 DNA‐packaging motor with customized single‐molecule dual‐view system , 2007, The EMBO journal.

[66]  J. Lakowicz,et al.  Viral DNA packaging studied by fluorescence correlation spectroscopy. , 2007, Biophysical journal.

[67]  R. Weisberg,et al.  Packaging of coliphage lambda DNA. II. The role of the gene D protein. , 1977, Journal of molecular biology.

[68]  H Fujisawa,et al.  Phage DNA packaging , 1997, Genes to cells : devoted to molecular & cellular mechanisms.

[69]  Liang Tang,et al.  The Structure of an Infectious P22 Virion Shows the Signal for Headful DNA Packaging , 2006, Science.

[70]  William M. Gelbart,et al.  Osmotic pressure inhibition of DNA ejection from phage , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Alasdair C Steven,et al.  Encapsidated Conformation of Bacteriophage T7 DNA , 1997, Cell.

[72]  Michael Feiss,et al.  Bacteriophage Lambda Terminase and the Mechanism of Viral DNA Packaging , 2005 .

[73]  G. Oster,et al.  Reverse engineering a protein: the mechanochemistry of ATP synthase. , 2000, Biochimica et biophysica acta.

[74]  C. Bustamante,et al.  Mechanistic constraints from the substrate concentration dependence of enzymatic fluctuations , 2010, Proceedings of the National Academy of Sciences.

[75]  Rae M. Robertson,et al.  Measurements of single DNA molecule packaging dynamics in bacteriophage lambda reveal high forces, high motor processivity, and capsid transformations. , 2007, Journal of molecular biology.

[76]  C. Catalano,et al.  Building a virus from scratch: assembly of an infectious virus using purified components in a rigorously defined biochemical assay system. , 2006, Journal of molecular biology.

[77]  M. Feiss,et al.  The large subunit of bacteriophage λ’s terminase plays a role in DNA translocation and packaging termination 1 1 Edited by M. Gottesman , 2002 .

[78]  J. Michaelis,et al.  DNA based molecular motors. , 2009, Physics of life reviews.

[79]  Carlos Bustamante,et al.  Direct Observation of the Three-State Folding of a Single Protein Molecule , 2005, Science.

[80]  William M. Gelbart,et al.  DNA packaging and ejection forces in bacteriophage , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[81]  M. Rossmann,et al.  Conservation of the capsid structure in tailed dsDNA bacteriophages: the pseudoatomic structure of phi29. , 2005, Molecular cell.

[82]  G. S. Manning The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides , 1978, Quarterly Reviews of Biophysics.

[83]  Marc C. Morais,et al.  Structure of the bacteriophage φ29 DNA packaging motor , 2000, Nature.

[84]  Derek N. Fuller,et al.  Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability , 2007, Proceedings of the National Academy of Sciences.

[85]  Paul Grayson,et al.  Real-time observations of single bacteriophage λ DNA ejections in vitro , 2007, Proceedings of the National Academy of Sciences.

[86]  Jean Sippy,et al.  The Q motif of a viral packaging motor governs its force generation and communicates ATP recognition to DNA interaction , 2009, Proceedings of the National Academy of Sciences.

[87]  E. Orlova,et al.  Structural framework for DNA translocation via the viral portal protein , 2007, The EMBO journal.

[88]  S. Grimes,et al.  In vitro packaging of bacteriophage phi 29 DNA restriction fragments and the role of the terminal protein gp3. , 1989, Journal of molecular biology.

[89]  J. Lakowicz,et al.  DNA crunching by a viral packaging motor: Compression of a procapsid-portal stalled Y-DNA substrate. , 2010, Virology.

[90]  H. Murialdo Bacteriophage lambda DNA maturation and packaging. , 1991, Annual review of biochemistry.

[91]  Michael G. Rossmann,et al.  The Structure of the Phage T4 DNA Packaging Motor Suggests a Mechanism Dependent on Electrostatic Forces , 2008, Cell.

[92]  J. Sippy,et al.  Initial cos cleavage of bacteriophage λ concatemers requires proheads and gpFI in vivo , 2004 .

[93]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[94]  Batsal Devkota,et al.  Viral assembly: a molecular modeling perspective. , 2009, Physical chemistry chemical physics : PCCP.

[95]  V. Bloomfield,et al.  Packaging of DNA in bacteriophage Heads: Some considerations on energetics , 1978, Biopolymers.

[96]  Derek N. Fuller,et al.  Portal motor velocity and internal force resisting viral DNA packaging in bacteriophage phi29. , 2008, Biophysical journal.

[97]  M. Muthukumar,et al.  Langevin dynamics simulations of genome packing in bacteriophage. , 2006, Biophysical journal.

[98]  C. Joo,et al.  Advances in single-molecule fluorescence methods for molecular biology. , 2008, Annual review of biochemistry.

[99]  X. Xie,et al.  Single-molecule enzymatic dynamics. , 1998, Science.

[100]  Michelle D. Wang,et al.  Force and velocity measured for single molecules of RNA polymerase. , 1998, Science.

[101]  Dwight L. Anderson,et al.  Substrate Interactions and Promiscuity in a Viral DNA Packaging Motor , 2009, Nature.

[102]  Steven M Block,et al.  Forward and reverse motion of single RecBCD molecules on DNA. , 2004, Biophysical journal.

[103]  Rachel Millin,et al.  A general method for manipulating DNA sequences from any organism with optical tweezers , 2006, Nucleic acids research.

[104]  Douglas E. Smith,et al.  Mutations Altering a Structurally Conserved Loop-Helix-Loop Region of a Viral Packaging Motor Change DNA Translocation Velocity and Processivity , 2010, The Journal of Biological Chemistry.

[105]  M. Feiss,et al.  ATPase center of bacteriophage lambda terminase involved in post-cleavage stages of DNA packaging: identification of ATP-interactive amino acids. , 2000, Journal of molecular biology.

[106]  J. Rädler,et al.  Real-Time Imaging of DNA Ejection from Single Phage Particles , 2005, Current Biology.

[107]  William M Gelbart,et al.  Forces and pressures in DNA packaging and release from viral capsids. , 2003, Biophysical journal.

[108]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[109]  Charles C. Richardson,et al.  University of Groningen Single-Molecule Kinetics of λ Exonuclease Reveal Base Dependence and Dynamic Disorder , 2018 .

[110]  Ashley R. Carter,et al.  Precision surface-coupled optical-trapping assay with one-basepair resolution. , 2009, Biophysical journal.

[111]  V A Parsegian,et al.  Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Evidence for long range attractive hydration forces. , 1992, Biophysical journal.

[112]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[113]  Carlos Bustamante,et al.  Supplemental data for : The Bacteriophage ø 29 Portal Motor can Package DNA Against a Large Internal Force , 2001 .

[114]  A. Lehninger Principles of Biochemistry , 1984 .

[115]  Carlos Bustamante,et al.  Differential detection of dual traps improves the spatial resolution of optical tweezers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[116]  Rae M. Robertson,et al.  Diffusion of isolated DNA molecules: dependence on length and topology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[117]  Nancy R Forde,et al.  Mechanical processes in biochemistry. , 2004, Annual review of biochemistry.

[118]  J. Ross,et al.  Cargo transport: molecular motors navigate a complex cytoskeleton. , 2008, Current opinion in cell biology.

[119]  M. Rossmann,et al.  Defining molecular and domain boundaries in the bacteriophage phi29 DNA packaging motor. , 2008, Structure.

[120]  T. Ha,et al.  Bridging conformational dynamics and function using single-molecule spectroscopy. , 2006, Structure.