Multiscale simulation of nanosystems

The authors describe simulation approaches that seamlessly combine continuum mechanics with atomistic simulations and quantum mechanics. They also discuss computational and visualization issues associated with these simulations on massively parallel computers. Scientists are combining continuum mechanics and atomistic simulations through integrated multidisciplinary efforts so that a single simulation couples diverse length scales. However, the complexity of these hybrid schemes poses an unprecedented challenge, and developments in scalable parallel algorithms as well as interactive and immersive visualization are crucial for their success. This article describes such multiscale simulation approaches and associated computational issues using recent work as an example.

[1]  Rajiv K. Kalia,et al.  Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers , 2001 .

[2]  Rajiv K. Kalia,et al.  Scalable molecular-dynamics, visualization, and data management algorithms for materials simulations , 1989, Comput. Sci. Eng..

[3]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[4]  K. Morokuma,et al.  A NEW ONIOM IMPLEMENTATION IN GAUSSIAN98. PART I. THE CALCULATION OF ENERGIES, GRADIENTS, VIBRATIONAL FREQUENCIES AND ELECTRIC FIELD DERIVATIVES , 1999 .

[5]  Rajiv K. Kalia,et al.  Computer-aided design of high-temperature materials , 1999 .

[6]  Timothy Campbell,et al.  A scalable molecular-dynamics algorithm suite for materials simulations: design-space diagram on 1024 Cray T3E processors , 2000, Future Gener. Comput. Syst..

[7]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[8]  Robert E. Rudd,et al.  Concurrent Coupling of Length Scales in Solid State Systems , 2000 .

[9]  Paul Tavan,et al.  A hybrid method for solutes in complex solvents: Density functional theory combined with empirical force fields , 1999 .

[10]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .

[11]  Jerzy Bernholc,et al.  Computational Materials Science: The Era of Applied Quantum Mechanics , 1999 .

[12]  Aiichiro Nakano,et al.  Multiresolution load balancing in curved space: the wavelet representation , 1999, Concurr. Pract. Exp..

[13]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[14]  Frederick H. Streitz,et al.  Electrostatic potentials for metal-oxide surfaces and interfaces. , 1994 .

[15]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[16]  James R. Chelikowsky,et al.  Electronic Structure Methods for Predicting the Properties of Materials: Grids in Space , 2000 .

[17]  Daniel G. Aliaga,et al.  MMR: an interactive massive model rendering system using geometric and image-based acceleration , 1999, SI3D.

[18]  F. Streitz,et al.  Electrostatic potentials for metal-oxide surfaces and interfaces. , 1994, Physical review. B, Condensed matter.

[19]  A. Nakano,et al.  Molecular Dynamics Methods and Large-Scale Simulations of Amorphous Materials , 1997 .

[20]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[21]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[22]  Rajiv K. Kalia,et al.  DYNAMICS OF OXIDATION OF ALUMINUM NANOCLUSTERS USING VARIABLE CHARGE MOLECULAR-DYNAMICS SIMULATIONS ON PARALLEL COMPUTERS , 1999 .