Set colouring games

The game of Hex has been of particular interest to mathematicians, computer scientists, and game players alike ever since its discovery in the 1940s. The game is provably difficult in the sense of algorithmic complexity, yet its rich mathematical structure allows for many properties to be provable even when exact solutions to the game are unknown. Such properties can then be used to boost computational approaches to solving Hex on small boards, and playing well on larger boards. This thesis presents a general class of mathematical games that contains Hex and many of its relatives. The thesis generalizes all previously known Hex theory to this class, and identifies conditions that give rise to these properties. This enables rigorous proofs of game properties previously known only colloquially, as well as introduction of new properties. Algorithmic optimizations that follow from this theory have enabled advances in Hex solving and playing, and can be applied to related games as well.

[1]  R.K. Guy,et al.  On numbers and games , 1978, Proceedings of the IEEE.

[2]  J. Neumann,et al.  The Theory of Games and Economic Behaviour , 1944 .

[3]  Yuval Peres,et al.  Random-Turn Hex and Other Selection Games , 2005, Am. Math. Mon..

[4]  Armando Tacchella,et al.  Backjumping for Quantified Boolean Logic satisfiability , 2001, Artif. Intell..

[5]  Larry J. Stockmeyer,et al.  Provably Difficult Combinatorial Games , 1979, SIAM J. Comput..

[6]  Luca Pulina,et al.  Report of the Third QBF Solvers Evaluation , 2006, J. Satisf. Boolean Model. Comput..

[7]  Vadim V. Anshelevich,et al.  A hierarchical approach to computer Hex , 2002, Artif. Intell..

[8]  S. Kiefer Die Menge der virtuellen Verbindungen im Spiel Hex ist PSPACE-vollständig , 2003 .

[9]  Robert E. Tarjan,et al.  Decomposition by clique separators , 1985, Discret. Math..

[10]  Claude E. Shannon,et al.  Computers and Automata , 1953, Proceedings of the IRE.

[11]  Martin Müller,et al.  Game-SAT: A Preliminary Report , 2004, SAT.

[12]  Brian Sheppard,et al.  Efficient Control of Selective Simulations , 2004, J. Int. Comput. Games Assoc..

[13]  Ryan B. Hayward,et al.  Solving 7x7 Hex: Virtual Connections and Game-State Reduction , 2003, ACG.

[14]  Brian Sheppard,et al.  World-championship-caliber Scrabble , 2002, Artif. Intell..

[15]  Donald E. Eastlake,et al.  The Greenblatt chess program , 1967, AFIPS '67 (Fall).

[16]  L. V. Allis,et al.  Searching for solutions in games and artificial intelligence , 1994 .

[17]  Cameron Browne,et al.  Hex strategy - making the right connections , 2000 .

[18]  Jonathan Schaeffer,et al.  The challenge of poker , 2002, Artif. Intell..

[19]  Jonathan Schaeffer The History Heuristic , 1983, J. Int. Comput. Games Assoc..

[20]  Darse Billings,et al.  Thoughts on RoShamBo , 2000, J. Int. Comput. Games Assoc..

[21]  Vadim V. Anshelevich Hexy Wins Hex Tournament , 2000, J. Int. Comput. Games Assoc..

[22]  Michael Bradley Johanson,et al.  Dead Cell Analysis in Hex and the Shannon Game , 2006 .

[23]  Armando Tacchella,et al.  Challenges in the QBF Arena: the SAT'03 Evaluation of QBF Solvers , 2003, SAT.

[24]  Bruce Abramson,et al.  Expected-Outcome: A General Model of Static Evaluation , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Hanns-Georg Leimer,et al.  Optimal decomposition by clique separators , 1993, Discret. Math..

[26]  Thomas Thomsen Lambda-Search in Game Trees - with Application to Go , 2000, Computers and Games.

[27]  Frédéric Maire,et al.  An Extension of the H-Search Algorithm for Artificial Hex Players , 2004, Australian Conference on Artificial Intelligence.

[28]  Axel Ostmann,et al.  Decisions by players of comparable strength , 1985 .

[29]  Axel Ostmann Order and symmetry of simple games , 1993 .

[30]  Jan Willemson,et al.  SIX WINS HEX TOURNAMENT , 2004 .

[31]  Jing Yang,et al.  New Winning and Losing Positions for 7x7 HEx , 2002, Computers and Games.

[32]  T. Anthony Marsland,et al.  Parallel Search of Strongly Ordered Game Trees , 1982, CSUR.

[33]  Tristan Cazenave,et al.  Abstract Proof Search , 2000, Computers and Games.

[34]  Rémi Coulom,et al.  Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search , 2006, Computers and Games.

[35]  Dieter Kratsch,et al.  Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..

[36]  John Michael Robson,et al.  N by N Checkers is Exptime Complete , 1984, SIAM J. Comput..

[37]  Gerald Tesauro,et al.  On-line Policy Improvement using Monte-Carlo Search , 1996, NIPS.

[38]  Peter J. Jansen,et al.  Using knowledge about the opponent in game-tree search , 1992 .

[39]  E. Berlekamp,et al.  Winning Ways for Your Mathematical Plays , 1983 .

[40]  S. Whitesides A Method for Solving Certain Graph Recognition and Optimization Problems, with Applications to Perfect Graphs , 1982 .

[41]  H. Jaap van den Herik,et al.  Proof-Number Search , 1994, Artif. Intell..

[42]  Donald F. Beal,et al.  Random Evaluations in Chess , 1994, J. Int. Comput. Games Assoc..

[43]  J. Spinrad,et al.  Between O(nm) and O(nα) , 2003, SODA '03.

[44]  H. Jaap van den Herik,et al.  Games solved: Now and in the future , 2002, Artif. Intell..

[45]  Alfred Lehman,et al.  A Solution of the Shannon Switching Game , 1964 .

[46]  Armando Tacchella,et al.  Watched Data Structures for QBF Solvers , 2003, SAT.

[47]  Thomas J. Schaefer,et al.  On the Complexity of Some Two-Person Perfect-Information Games , 1978, J. Comput. Syst. Sci..

[48]  L. C. Lamb,et al.  On the Descriptive Complexity of a Simplified Game of Hex , 2002 .

[49]  B. Bouzy,et al.  DEVELOPMENTS ON MONTE CARLO GO , 2003 .

[50]  D. Gale The Game of Hex and the Brouwer Fixed-Point Theorem , 1979 .

[51]  Joseph Culberson,et al.  Sokoban is PSPACE-complete , 1997 .

[52]  Armando Tacchella,et al.  Learning for quantified boolean logic satisfiability , 2002, AAAI/IAAI.

[53]  Ryan B. Hayward,et al.  Hex and combinatorics , 2006, Discret. Math..

[54]  David J. Slate,et al.  Chess 4.5-The Northwestern University chess program , 1988 .

[55]  Michael Buro Toward Opening Book Learning , 1999, J. Int. Comput. Games Assoc..

[56]  Ryan B. Hayward,et al.  Solving 7x7 Hex with domination, fill-in, and virtual connections , 2005, Theor. Comput. Sci..

[57]  Robert E. Tarjan,et al.  A Combinatorial Problem Which Is Complete in Polynomial Space , 1976, JACM.

[58]  Aviezri S. Fraenkel,et al.  Computing a Perfect Strategy for n*n Chess Requires Time Exponential in N , 1981, ICALP.

[59]  U. Egly,et al.  On Quantifier Shifting for Quantified Boolean Formulas , 2004 .

[60]  Stefan Reisch,et al.  Hex ist PSPACE-vollständig , 1981, Acta Informatica.

[61]  Jack van Rijswijck Search and evaluation in Hex , 2002 .

[62]  Yohei Yamasaki,et al.  Theory of Division Games , 1978 .

[63]  Vadim V. Anshelevich,et al.  The Game of Hex: An Automatic Theorem Proving Approach to Game Programming , 2000, AAAI/IAAI.

[64]  Jonathan Schaeffer,et al.  The History Heuristic and Alpha-Beta Search Enhancements in Practice , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  Donald E. Knuth,et al.  The Solution for the Branching Factor of the Alpha-Beta Pruning Algorithm , 1981, ICALP.

[66]  C. Berge Some Remarks about a Hex Problem , 1981 .

[67]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[68]  Axel Ostmann,et al.  On the minimal representation of homogeneous games , 1987 .

[69]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[70]  Armando Tacchella,et al.  The Second QBF Solvers Comparative Evaluation , 2004, SAT (Selected Papers.

[71]  Holger H. Hoos,et al.  Using Stochastic Local Search to Solve Quantified Boolean Formulae , 2003, CP.

[72]  Bernd Brügmann Max-Planck Monte Carlo Go , 1993 .