Comparison of two PV array models for the simulation of PV systems using five different algorithms for the parameters identification

Simulation is of primal importance in the prediction of the produced power and automatic fault detection in PV grid-connected systems (PVGCS). The accuracy of simulation results depends on the models used for main components of the PV system, especially for the PV module. The present paper compares two PV array models, the five-parameter model (5PM) and the Sandia Array Performance Model (SAPM). Five different algorithms are used for estimating the unknown parameters of both PV models in order to see how they affect the accuracy of simulations in reproducing the outdoor behavior of three PVGCS. The arrays of the PVGCS are of three different PV module technologies: Crystalline silicon (c-Si), amorphous silicon (a-Si:H) and micromorph silicon (a-Si:H/μc-Si:H).

[1]  Mohammad Reza Azizian,et al.  On the Parameter Extraction of a Five-Parameter Double-Diode Model of Photovoltaic Cells and Modules , 2014, IEEE Journal of Photovoltaics.

[2]  William A. Beckman,et al.  Improvement and validation of a model for photovoltaic array performance , 2006 .

[3]  Giuseppina Ciulla,et al.  A comparison of different one-diode models for the representation of I–V characteristic of a PV cell , 2014 .

[4]  Santiago Silvestre,et al.  Modelling Photovoltaic Systems Using PSpice®: Castaner/Modelling Photovoltaic Systems Using PSpice , 2006 .

[5]  Elyes Garoudja,et al.  Parameters extraction of photovoltaic module for long-term prediction using artifical bee colony optimization , 2015, 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT).

[6]  A. Dolara,et al.  Comparison of different physical models for PV power output prediction , 2015 .

[7]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[8]  Francesco Grimaccia,et al.  A Physical Hybrid Artificial Neural Network for Short Term Forecasting of PV Plant Power Output , 2015 .

[9]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[10]  Alon Kuperman,et al.  An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel , 2014 .

[11]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[12]  Giuseppe Marco Tina,et al.  Development of Models for On-line Diagnostic and Energy Assessment Analysis of PV Power Plants: The Study Case of 1 MW Sicilian PV Plant , 2015 .

[13]  Yves-Marie Saint-Drenan,et al.  An empirical approach to parameterizing photovoltaic plants for power forecasting and simulation , 2015 .

[14]  Carlos Andrés Ramos-Paja,et al.  A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel , 2017, Math. Comput. Simul..

[15]  Gustavo Nofuentes,et al.  Analysis of current and voltage indicators in grid connected PV (photovoltaic) systems working in faulty and partial shading conditions , 2015 .

[16]  Lin Lu,et al.  Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays , 2014 .

[17]  Tamer Khatib,et al.  A comparative study of evolutionary algorithms and adapting control parameters for estimating the parameters of a single-diode photovoltaic module's model , 2016 .

[18]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[19]  William E. Boyson,et al.  Photovoltaic array performance model. , 2004 .

[20]  Ali Naci Celik,et al.  Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models , 2007 .

[21]  Teuku Meurah Indra Mahlia,et al.  Characterization of PV panel and global optimization of its model parameters using genetic algorithm , 2013 .

[22]  Hongxing Yang,et al.  Validation of the Sandia model with indoor and outdoor measurements for semi-transparent amorphous silicon PV modules , 2015 .

[23]  Aissa Chouder,et al.  Automatic supervision and fault detection of PV systems based on power losses analysis , 2010 .

[24]  C. Sah,et al.  Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics , 1957, Proceedings of the IRE.

[25]  Alain K. Tossa,et al.  A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions , 2014 .

[26]  Tamer Khatib,et al.  Modeling of photovoltaic array output current based on actual performance using artificial neural networks , 2015 .

[27]  Gustavo Nofuentes,et al.  Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure , 2016 .

[28]  Engin Karatepe,et al.  New procedure for fault detection in grid connected PV systems based on the evaluation of current and voltage indicators , 2014 .

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  Dervis Karaboga,et al.  Artificial bee colony algorithm , 2010, Scholarpedia.

[31]  Jieming Ma,et al.  Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms , 2016 .

[32]  Giorgio Sulligoi,et al.  A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks , 2016 .

[33]  Aissa Chouder,et al.  Automatic fault detection in grid connected PV systems , 2013 .

[34]  Aissa Chouder,et al.  Modeling and simulation of a grid connected PV system based on the evaluation of main PV module parameters , 2012, Simul. Model. Pract. Theory.

[35]  Azah Mohamed,et al.  Modeling of photovoltaic array using random forests technique , 2015, 2015 IEEE Conference on Energy Conversion (CENCON).

[36]  Kashif Ishaque,et al.  An improved method to estimate the parameters of the single diode model of photovoltaic module using differential evolution , 2015, 2015 4th International Conference on Electric Power and Energy Conversion Systems (EPECS).

[37]  A. García,et al.  Selecting a suitable model for characterizing photovoltaic devices , 2002 .

[38]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .