Some numerical algorithms for solving the highly oscillatory second-order initial value problems

Abstract In this paper, some numerical algorithms (spectral collocation method, block spectral collocation method, boundary value method, block boundary value method, implicit Runge–Kutta method, diagonally implicit Runge–Kutta method and total variation diminishing Runge–Kutta method) are used to solve the highly oscillatory second-order initial value problems. We first derive these methods for the first-order initial value problems, and then extend these methods to the highly oscillatory nonlinear systems by matrix analysis methods. These new methods preserve the accuracy of the original methods and the main advantages of these new methods are low storage requirements and high efficiency. Extensive numerical results are presented to demonstrate the convergence properties of these methods.

[1]  L. Brugnano,et al.  Solving differential problems by multistep initial and boundary value methods , 1998 .

[2]  Lena Osterhagen Problems And Solutions In Introductory And Advanced Matrix Calculus , 2016 .

[3]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[4]  Richard Baltensperger,et al.  Spectral Differencing with a Twist , 2002, SIAM J. Sci. Comput..

[5]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[6]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[7]  J. M. Franco Stability of explicit ARKN methods for perturbed oscillators , 2005 .

[8]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[9]  Satish C. Reddy,et al.  A MATLAB differentiation matrix suite , 2000, TOMS.

[10]  Xinyuan Wu,et al.  A note on stability of multidimensional adapted Runge–Kutta–Nyström methods for oscillatory systems☆ , 2012 .

[11]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[12]  Francesca Mazzia,et al.  Block-Boundary Value Methods for the Solution of Ordinary Differential Equations , 1999, SIAM J. Sci. Comput..

[13]  S. Graham Kelly Mechanical Vibrations: Theory and Applications , 2006 .

[14]  Fudziah Bt. Ismail,et al.  Zero-dissipative phase-fitted hybrid methods for solving oscillatory second order ordinary differential equations , 2013, Appl. Math. Comput..

[15]  Ben P. Sommeijer,et al.  Diagonally implicit Runge-Kutta-Nystrm methods for oscillatory problems , 1989 .

[16]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[17]  Theodore E. Simos,et al.  A phase-fitted Runge-Kutta-Nyström method for the numerical solution of initial value problems with oscillating solutions , 2008, Comput. Phys. Commun..

[18]  Bin Wang,et al.  Efficient energy-preserving integrators for oscillatory Hamiltonian systems , 2013, J. Comput. Phys..

[19]  Xinyuan Wu,et al.  Structure-Preserving Algorithms for Oscillatory Differential Equations , 2013 .

[20]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[21]  Jianlin Xia,et al.  Explicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations , 2012, J. Comput. Phys..

[22]  N. Higham The numerical stability of barycentric Lagrange interpolation , 2004 .

[23]  Xinyuan Wu,et al.  A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems , 2013, J. Comput. Phys..

[24]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[25]  Mehdi Dehghan,et al.  The use of compact boundary value method for the solution of two-dimensional Schrödinger equation , 2009 .

[26]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .