Backtracking search algorithm with competitive learning for identification of unknown parameters of photovoltaic systems

Abstract Metaheuristic algorithms have been successfully used to parameter identification of photovoltaic systems. However, this still faces the following two challenges. Firstly, most of the applied algorithms are complex and need some extra control parameters except the essential population size and stopping criterion, which is against their applications in photovoltaic systems with different characteristics. Secondly, how to obtain model parameters with higher accuracy and reliability has been a very valuable topic. To address the two challenges, this paper presents a new optimization method called backtracking search algorithm with competitive learning (CBSA) for parameter identification of photovoltaic systems. The remarkable features of CBSA are that it has a very simple structure and only needs the essential parameters. The core idea of CBSA is to increase the chance of backtracking search algorithm (BSA) to jump out of the local optimum by the designed competitive learning mechanism. In CBSA, the population is first divided into two subpopulations by built competitive mechanism. Then each subpopulation is optimized by the different search operators with multiple learning strategies. In order to test the performance of CBSA, CBSA is first employed to solve five challenging engineering design optimization problems and then is used to estimate the unknown parameters of three photovoltaic models. Experimental results show the solutions offered by CBSA outperform those of the compared algorithms including BSA, two recently proposed variants of BSA and other some state-of-the-art algorithms on nearly all test problems, which proves the effectiveness of the improved strategies.

[1]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[2]  Jun Zhang,et al.  Automatic Niching Differential Evolution With Contour Prediction Approach for Multimodal Optimization Problems , 2020, IEEE Transactions on Evolutionary Computation.

[3]  A. Gandomi,et al.  Mixed variable structural optimization using Firefly Algorithm , 2011 .

[4]  Zhicong Chen,et al.  Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm , 2017 .

[5]  Saeed Balochian,et al.  Social mimic optimization algorithm and engineering applications , 2019, Expert Syst. Appl..

[6]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[7]  Yaochu Jin,et al.  A Competitive Swarm Optimizer for Large Scale Optimization , 2015, IEEE Transactions on Cybernetics.

[8]  Yuqing He,et al.  Parameter extraction of solar cell models using chaotic asexual reproduction optimization , 2014, Neural Computing and Applications.

[9]  Wenxiang Zhao,et al.  Parameters identification of solar cell models using generalized oppositional teaching learning based optimization , 2016 .

[10]  Liang Gao,et al.  Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization , 2019, Energy Conversion and Management.

[11]  R. P. Saini,et al.  Identification of unknown parameters of a single diode photovoltaic model using particle swarm optimization with binary constraints , 2017 .

[12]  Xin Wang,et al.  Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization , 2017 .

[13]  Vineet Kumar,et al.  PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm , 2017, Swarm Evol. Comput..

[14]  Liang Gao,et al.  Backtracking Search Algorithm with three constraint handling methods for constrained optimization problems , 2015, Expert Syst. Appl..

[15]  S. Mekhilef,et al.  Improved Differential Evolution-Based MPPT Algorithm Using SEPIC for PV Systems Under Partial Shading Conditions and Load Variation , 2018, IEEE Transactions on Industrial Informatics.

[16]  Liang Gao,et al.  Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems , 2018, Applied Mathematical Modelling.

[17]  Leandro dos Santos Coelho,et al.  An improved free search differential evolution algorithm: A case study on parameters identification of one diode equivalent circuit of a solar cell module , 2015 .

[18]  Haifeng Shen,et al.  An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation , 2019, Expert Syst. Appl..

[19]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[20]  RakhshaniHojjat,et al.  Snap-drift cuckoo search , 2017 .

[21]  Dalia Yousri,et al.  Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm , 2016 .

[22]  Ling Wang,et al.  An effective differential evolution with level comparison for constrained engineering design , 2010 .

[23]  Hany M. Hasanien,et al.  Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules , 2019, Energy.

[24]  George E. Tsekouras,et al.  Modeling beach realignment using a neuro-fuzzy network optimized by a novel backtracking search algorithm , 2018, Neural Computing and Applications.

[25]  Hojjat Rakhshani,et al.  Snap-drift cuckoo search: A novel cuckoo search optimization algorithm , 2017, Appl. Soft Comput..

[26]  Heng Wang,et al.  Parameter extraction of solar cell models using improved shuffled complex evolution algorithm , 2018, Energy Conversion and Management.

[27]  Q. Niu,et al.  A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells , 2014 .

[28]  V. Ho-Huu,et al.  An adaptive elitist differential evolution for optimization of truss structures with discrete design variables , 2016 .

[29]  Yu He,et al.  Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm , 2018, Energy Conversion and Management.

[30]  Anis Sakly,et al.  Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction , 2018, Energy Conversion and Management.

[31]  Tapabrata Ray,et al.  Society and civilization: An optimization algorithm based on the simulation of social behavior , 2003, IEEE Trans. Evol. Comput..

[32]  Mojtaba Alizadeh,et al.  Parameter estimation of photovoltaic cells using improved Lozi map based chaotic optimization Algorithm , 2019, Solar Energy.

[33]  Ricardo Landa Becerra,et al.  Efficient evolutionary optimization through the use of a cultural algorithm , 2004 .

[34]  Erwie Zahara,et al.  Hybrid Nelder-Mead simplex search and particle swarm optimization for constrained engineering design problems , 2009, Expert Syst. Appl..

[35]  Dalia Yousri,et al.  Flower Pollination Algorithm based solar PV parameter estimation , 2015 .

[36]  C. Chellaswamy,et al.  Parameter extraction of solar cell models based on adaptive differential evolution algorithm , 2016, Renewable Energy.

[37]  Jiangang Yao,et al.  A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models , 2018 .

[38]  D. Maskell,et al.  Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm , 2013 .

[39]  Graham Kendall,et al.  Optimization of fed-batch fermentation processes using the Backtracking Search Algorithm , 2018, Expert Syst. Appl..

[40]  Yong Wang,et al.  Differential Evolution With a New Encoding Mechanism for Optimizing Wind Farm Layout , 2018, IEEE Transactions on Industrial Informatics.

[41]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[42]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[43]  Qishuang Ma,et al.  Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing , 2017 .

[44]  Rabeh Abbassi,et al.  An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models , 2019, Energy Conversion and Management.

[45]  Xu Chen,et al.  Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters , 2019, Solar Energy.

[46]  Hsing-Chih Tsai,et al.  Integrating the artificial bee colony and bees algorithm to face constrained optimization problems , 2014, Inf. Sci..

[47]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[48]  Amir Mohammad Beigi,et al.  Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms , 2018, Solar Energy.

[49]  Leandro dos Santos Coelho,et al.  Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problems , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[50]  Ahmed Fathy,et al.  Parameter estimation of photovoltaic system using imperialist competitive algorithm , 2017 .

[51]  J. Phillips,et al.  A comparative study of extraction methods for solar cell model parameters , 1986 .

[52]  Francisco Gordillo,et al.  Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm , 2019, Energy.

[53]  Xu Chen,et al.  Parameters identification of photovoltaic models using an improved JAYA optimization algorithm , 2017 .

[54]  Zhun Fan,et al.  Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique , 2009 .

[55]  Mehdi Bigdeli,et al.  Very accurate parameter estimation of single- and double-diode solar cell models using a modified artificial bee colony algorithm , 2016 .

[56]  Nasrudin Abd Rahim,et al.  Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization , 2016 .

[57]  A. Amirjanov The development of a changing range genetic algorithm , 2006 .

[58]  Jing J. Liang,et al.  Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models , 2020 .

[59]  Vimal Savsani,et al.  Passing vehicle search (PVS): A novel metaheuristic algorithm , 2016 .

[60]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[61]  Pinar Çivicioglu,et al.  Backtracking Search Optimization Algorithm for numerical optimization problems , 2013, Appl. Math. Comput..

[62]  Hsing-Chih Tsai,et al.  Improving backtracking search algorithm with variable search strategies for continuous optimization , 2019, Appl. Soft Comput..

[63]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[64]  Swagatam Das,et al.  Reusing the Past Difference Vectors in Differential Evolution—A Simple But Significant Improvement , 2020, IEEE Transactions on Cybernetics.

[65]  A. R. Jordehi Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules , 2018 .

[66]  Ardeshir Bahreininejad,et al.  Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems , 2012 .

[67]  Sima Ghosh,et al.  Improved backtracking search algorithm for pseudo dynamic active earth pressure on retaining wall supporting c-Ф backfill , 2017, Appl. Soft Comput..

[68]  Diego Oliva,et al.  Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm , 2017 .

[69]  Jing Liang,et al.  Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models , 2018, Applied Energy.

[70]  Yi Zhang,et al.  A hybrid algorithm based on self-adaptive gravitational search algorithm and differential evolution , 2018, Expert Syst. Appl..

[71]  Amir Hossein Gandomi,et al.  Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems , 2011, Engineering with Computers.

[72]  Nor Ashidi Mat Isa,et al.  A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems , 2020, Expert Syst. Appl..

[73]  Hsing-Chih Tsai,et al.  Unified particle swarm delivers high efficiency to particle swarm optimization , 2017, Appl. Soft Comput..

[74]  Wenjian Luo,et al.  Differential evolution with dynamic stochastic selection for constrained optimization , 2008, Inf. Sci..

[75]  Lin Wang,et al.  Advanced backtracking search optimization algorithm for a new joint replenishment problem under trade credit with grouping constraint , 2020, Appl. Soft Comput..

[76]  Haifeng Zhou,et al.  Application of Artificial Bee Colony in Model Parameter Identification of Solar Cells , 2015 .

[77]  Yong Wang,et al.  Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization , 2010, Appl. Soft Comput..