Late-summer phytoplankton in western Lake Erie (Laurentian Great Lakes): bloom distributions, toxicity, and environmental influences

Phytoplankton abundance and composition and the cyanotoxin, microcystin, were examined relative to environmental parameters in western Lake Erie during late-summer (2003–2005). Spatially explicit distributions of phytoplankton occurred on an annual basis, with the greatest chlorophyll (Chl) a concentrations occurring in waters impacted by Maumee River inflows and in Sandusky Bay. Chlorophytes, bacillariophytes, and cyanobacteria contributed the majority of phylogenetic-group Chl a basin-wide in 2003, 2004, and 2005, respectively. Water clarity, pH, and specific conductance delineated patterns of group Chl a, signifying that water mass movements and mixing were primary determinants of phytoplankton accumulations and distributions. Water temperature, irradiance, and phosphorus availability delineated patterns of cyanobacterial biovolumes, suggesting that biotic processes (most likely, resource-based competition) controlled cyanobacterial abundance and composition. Intracellular microcystin concentrations corresponded to Microcystis abundance and environmental parameters indicative of conditions coincident with biomass accumulations. It appears that environmental parameters regulate microcystin indirectly, via control of cyanobacterial abundance and distribution.

[1]  K. Beattie,et al.  Losses of the cyanobacterial toxin microcystin-LR from aqueous solution by adsorption during laboratory manipulations. , 2001, Toxicon : official journal of the International Society on Toxinology.

[2]  虎東 朴,et al.  ヒゲナガカワトビケラ(Stenopsyche marmorata)におよる籃藻毒素microcystinの蓄積とその毒素が天竜川生態系に及ぼす影響 , 2004 .

[3]  D. Millie,et al.  PIGMENT AND PHOTOSYNTHETIC RESPONSES OF OSCILLATORIA AGARDHII (CYANOPHYTA) TO PHOTON FLUX DENSITY AND SPECTRAL QUALITY 1 , 1990 .

[4]  R. Robarts Factors controlling primary production in a hypertrophic lake (Hartbeespoort Dam, South Africa) , 1984 .

[5]  W. L. Hartman EFFECTS OF EXPLOITATION, ENVIRONMENTAL CHANGES, AND NEW SPECIES ON THE FISH HABITATS AND RESOURCES OF LAKE ERIE , 1973 .

[6]  E. Dittmann,et al.  Diversity of Microcystin Genes within a Population of the Toxic Cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany) , 2001, Microbial Ecology.

[7]  D. Dietrich,et al.  Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. , 2000, Environmental health perspectives.

[8]  M. Munawar,et al.  Is Lake Erie a resilient ecosystem? , 2002 .

[9]  B. McCune,et al.  Analysis of Ecological Communities , 2002 .

[10]  C. C. Davis EVIDENCE FOR THE EUTROPHICATION OF LAKE ERIE FROM PHYTOPLANKTON RECORDS , 1964 .

[11]  C. Herdendorf The Ecology of the Coastal Marshes of Western Lake Erie: A Community Profile. , 1987 .

[12]  D. Mackey,et al.  Algal class abundances in the western equatorial Pacific: Estimation from HPLC measurements of chloroplast pigments using CHEMTAX , 1998 .

[13]  D. Millie,et al.  Standard Niskin and Van Dorn bottles inhibit phytoplankton photosynthesis in Lake Michigan , 2002 .

[14]  M. Charlton,et al.  Seasonal Phosphate Demand for Lake Erie Plankton , 1983 .

[15]  Sara M. Handy,et al.  Toxic Microcystis is Widespread in Lake Erie: PCR Detection of Toxin Genes and Molecular Characterization of Associated Cyanobacterial Communities , 2006, Microbial Ecology.

[16]  B. Ibelings,et al.  Grazing on colonial and filamentous, toxic and non-toxic cyanobacteria by the zebra mussel Dreissena polymorpha , 2005 .

[17]  T. Downing,et al.  Microcystin content of Microcystis aeruginosa is modulated by nitrogen uptake rate relative to specific growth rate or carbon fixation rate , 2005, Environmental toxicology.

[18]  H. Paerl,et al.  Ecology of Blue-Green Algae in Aquaculture Ponds , 1995 .

[19]  V. Paul,et al.  Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. , 2006, Aquatic toxicology.

[20]  Jürgen Weckesser,et al.  Microcystins (hepatotoxic heptapeptides) in german fresh water bodies , 1999 .

[21]  D. Porta,et al.  Annual Variability of Phytoplankton Primary Production in the Western Basin of Lake Erie (2002–2003) , 2005 .

[22]  Priscilla Robinson,et al.  Health effects of exposure to cyanobacteria (blue–green algae) during recreational water–related activities , 1977, Australian and New Zealand journal of public health.

[23]  T. Börner,et al.  Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. , 2004, Environmental microbiology.

[24]  J. Leach,et al.  Factors regulating primary production and phytoplankton dynamics in western Lake Erie , 2007 .

[25]  F. Ollevier,et al.  The inflow of the Rusizi River to Lake Tanganyika , 1999, Hydrobiologia.

[26]  H. Paerl,et al.  Microalgal Pigment Assessments Using High-Performance Liquid Chromatography: A Synopsis of Organismal and Ecological Applications , 1993 .

[27]  F. Jüttner,et al.  High grazer toxicity of [D-Asp(3),(E)-Dhb(7)]microcystin-RR of Planktothrix rubescens as compared to different microcystins. , 2001, Toxicon : official journal of the International Society on Toxinology.

[28]  Gregory T. Epp Grazing on filamentous cyanobacteria by Daphnia pulicaria , 1996 .

[29]  L. Schlüter,et al.  The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios , 2000 .

[30]  P. Orr,et al.  Relationship between microcystin production and cell division rates in nitrogen‐limited Microcystis aeruginosa cultures , 1998 .

[31]  D. C. Chandler Limnological Studies of Western Lake Erie. 1, Plankton and Certain Physical-Chemical Data of the Bass Islands Region, from September, 1938, to November, 1939 , 1940 .

[32]  L. Fabbro,et al.  Changes in cyanoprokaryote populations, Microcystis morphology, and microcystin concentrations in Lake Elphinstone (Central Queensland, Australia) , 2003, Environmental toxicology.

[33]  H. Paerl A comparison of cyanobacterial bloom dynamics in freshwater, estuarine and marine environments , 1996 .

[34]  Richard D. Robarts,et al.  Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria , 1987 .

[35]  T. W. Lewis,et al.  Phytoplankton Composition and Biomass in the Offshore Waters of Lake Erie: Pre- and Post-Dreissena Introduction (1983–1993) , 1999 .

[36]  R. Wetzel Limnology: Lake and River Ecosystems , 1975 .

[37]  K. Nicholls Planktonic green algae in western Lake Erie: the importance of temporal scale in the interpretation of change , 1997 .

[38]  S. Wilhelm,et al.  Diversity of Microcystin-Producing Cyanobacteria in Spatially Isolated Regions of Lake Erie , 2006, Applied and Environmental Microbiology.

[39]  S. Watson,et al.  New Microcystin Concerns in the Lower Great Lakes , 2003 .

[40]  Ping Xie,et al.  Relationships between microcystins and environmental parameters in 30 subtropical shallow lakes along the Yangtze River, China , 2006 .

[41]  A. Krause,et al.  The Structure of the Planktonic Food-Web in the St. Lawrence Great Lakes , 1998 .

[42]  H. Paerl,et al.  Blooms Like It Hot , 2008, Science.

[43]  J. Leflaive,et al.  Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins , 2007 .

[44]  R. Hecky,et al.  The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans , 1993 .

[45]  C. Davis,et al.  Water chemistry and phytoplankton field and laboratory procedures , 1979 .

[46]  Erik Jeppesen,et al.  Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes , 1994 .

[47]  Hans W. Paerl,et al.  Physiological ecology of toxic aquatic cyanobacteria , 1996 .

[48]  Lirong Song,et al.  Microcystin production of Microcystis viridis (cyanobacteria) under different culture conditions , 1998 .

[49]  H. Gruner Vollenweider, R. A. (Editor): A Manual on Methods für Measuring Primary Production in Aquatic Environments.–IBP Handbook No. 12. — Oxford und Edinburgh (Blackwell Scientific Publications) 1969; 244 S., 23 Abb.; 45 sh , 1972 .

[50]  M. Charlton,et al.  Phytoplankton Nutrient Status in Lake Erie in 1997 , 2005 .

[51]  M. Lukač,et al.  Influence of trace metals on growth and toxin production of Microcystis aeruginosa. , 1993, Toxicon : official journal of the International Society on Toxinology.

[52]  H. Paerl,et al.  Adaptation to High-Intensity, Low-Wavelength Light among Surface Blooms of the Cyanobacterium Microcystis aeruginosa , 1985, Applied and environmental microbiology.

[53]  S. Shibata,et al.  A proposal for the unification of five species of the cyanobacterial genus Microcystis Kützing ex Lemmermann 1907 under the rules of the Bacteriological Code. , 2001, International journal of systematic and evolutionary microbiology.

[54]  Paul L. Stutzman Food quality of gelatinous colonial chlorophytes to the freshwater zooplankters Daphnia pulicaria and Diaptomus oregonensis , 1995 .

[55]  Wayne W. Carmichael,et al.  Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie , 2001 .

[56]  J. Wittig,et al.  The Great Lakes: An Environmental Atlas and Resource Book , 1988 .

[57]  H. Paerl,et al.  Flow scintillation counting of 14 C-labeled microalgal photosynthetic pigments , 1996 .

[58]  K. R. Clarke,et al.  Non‐parametric multivariate analyses of changes in community structure , 1993 .

[59]  L. Lawton,et al.  Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. , 1994, The Analyst.

[60]  R. Goericke,et al.  The chlorophyll‐labeling method: Measuring specific rates of chlorophyll a synthesis in cultures and in the open ocean , 1993 .

[61]  H. Paerl Nuisance phytoplankton blooms in coastal, estuarine, and inland waters1 , 1988 .

[62]  J. Hartig,et al.  Seasonal Variation of Nutrient Limitation in Western Lake Erie , 1984 .

[63]  G. Boyer,et al.  Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. , 2005, Environmental science & technology.

[64]  J. W. G. Lund,et al.  A Manual on Methods for Measuring Primary Production in Aquatic Environments. , 1970 .

[65]  Models for ultraviolet radiation—dependent photoinhibition of Lake Erie phytoplankton , 2004 .

[66]  R. Stumpf,et al.  Satellite observations of Microcystis blooms in western Lake Erie , 2001 .

[67]  F. Rosa,et al.  Lake Erie Central Basin Oxygen Depletion Changes from 1929–1980 , 1987 .

[68]  D. Millie,et al.  Microcystin concentrations and cell quotas in Saginaw Bay, Lake Huron , 2008 .

[69]  E. Dittmann,et al.  Distribution of microcystin-producing and non-microcystin-producing Microcystis sp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. , 2004, Systematic and applied microbiology.

[70]  D. Dietrich,et al.  Presence of Planktothrix sp. and cyanobacterial toxins in Lake Ammersee, Germany and their impact on whitefish (Coregonus lavaretus L.) , 2001, Environmental toxicology.

[71]  D. Millie,et al.  Influence of environmental conditions on late-summer cyanobacterial abundance in Saginaw Bay, Lake Huron , 2008 .

[72]  C. P. Madenjian Removal of algae by the zebra mussel (Dreissena polymorpha) population in western Lake Erie: a bioenergetics approach , 1995 .

[73]  D. Menzel,et al.  THE MEASUREMENT OF TOTAL PHOSPHORUS IN SEAWATER BASED ON THE LIBERATION OF ORGANICALLY BOUND FRACTIONS BY PERSULFATE OXIDATION1 , 1965 .

[74]  T. L. Kovacik Information on the Velocity and Flow Pattern of Detroit River Water in Western Lake Erie Revealed by an Accidental Salt Spill , 1972 .

[75]  J. Eloff,et al.  Effect of temperature and light on the toxicity and growth of the blue-green alga Microcystis aeruginosa (UV-006) , 2004, Planta.

[76]  H. Utermöhl Zur Vervollkommnung der quantitativen Phytoplankton-Methodik , 1958 .

[77]  W. Sonzogni,et al.  United States Great Lakes Tributary Loadings , 1978 .

[78]  Oscar Schofield,et al.  PHYTOPLANKTON PIGMENTS IN COASTAL LAKE MICHIGAN: DISTRIBUTIONS DURING THE SPRING ISOTHERMAL PERIOD AND RELATION WITH EPISODIC SEDIMENT RESUSPENSION1 , 2002 .

[79]  D. G. Wallen,et al.  Heterogeneous patterns of primary productivity in western Lake Erie , 1984 .

[80]  T. Lauridsen,et al.  Identification and quantification of phytoplankton groups in lakes using new pigment ratios – a comparison between pigment analysis by HPLC and microscopy , 2006 .

[81]  J. Benndorf,et al.  Direct effects of Daphnia-grazing, not infochemicals, mediate a shift towards large inedible colonies of the gelatinous green alga Sphaerocystis schroeteri , 2007 .

[82]  J. Conroy,et al.  Hypolimnetic Oxygen Depletion Dynamics in the Central Basin of Lake Erie , 2005 .

[83]  P. Babica,et al.  EXPLORING THE NATURAL ROLE OF MICROCYSTINS—A REVIEW OF EFFECTS ON PHOTOAUTOTROPHIC ORGANISMS 1 , 2006 .

[84]  P. Sly Lake Erie and its Basin , 1976 .

[85]  N. M. Burns,et al.  Erie: The Lake That Survived , 1986 .

[86]  S. Wright,et al.  CHEMTAX - a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton , 1996 .

[87]  M. Munawar,et al.  Phytoplankton dynamics in the North American Great Lakes , 2013 .

[88]  M. Lotocka Toxic effect of cyanobacterial blooms on the grazing activity of Daphnia magna Straus , 2001 .

[89]  R. Robarts,et al.  Phytoplankton extracellular dissolved organic carbon production in a hypertrophic African Lake , 1989, Hydrobiologia.

[90]  F. Healey,et al.  Physiological Indicators of Nutrient Deficiency in Lake Phytoplankton , 1980 .

[91]  K. R. Clarke,et al.  Change in marine communities : an approach to statistical analysis and interpretation , 2001 .

[92]  C. Bernard,et al.  A perennial bloom of Planktothrix agardhii (Cyanobacteria) in a shallow eutrophic French lake: limnological and microcystin production studies , 2002 .

[93]  C. Roberts First records of demersal fishes from the North Cape ‐ three kings area of New Zealand, with a record of a prespawning aggregation of ling, Genypterus blacodes (note) , 1987 .

[94]  S. Wilhelm,et al.  Effect of phosphorus amendments on present day plankton communities in pelagic Lake Erie , 2003 .

[95]  E. Dittmann,et al.  Light and the Transcriptional Response of the Microcystin Biosynthesis Gene Cluster , 2000, Applied and Environmental Microbiology.

[96]  K. Sivonen,et al.  Assessment of Environmental Conditions That Favor Hepatotoxic and Neurotoxic Anabaena spp. Strains Cultured under Light Limitation at Different Temperatures , 1998, Microbial Ecology.

[97]  D. Millie,et al.  Microcystin concentrations and genetic diversity of Microcystis in the lower Great Lakes , 2008, Environmental toxicology.

[98]  B. Moss Factors controlling the seasonal incidence of Pandorina morum (Mull.) Bory (Chlorophyta, Volvocales) in a small pond , 1977, Hydrobiologia.

[99]  J. Conroy,et al.  Soluble nitrogen and phosphorus excretion of exotic freshwater mussels (Dreissena spp.): potential impacts for nutrient remineralisation in western Lake Erie , 2005 .

[100]  G. Fahnenstiel,et al.  Spring isothermal mixing in the Great Lakes: evidence of nutrient limitation and nutrient-light interactions in a suboptimal light environment , 2000 .

[101]  K. Nicholls,et al.  Recent Changes in Lake Erie (North Shore) Phytoplankton: Cumulative Impacts of Phosphorus Loading Reductions and the Zebra Mussel Introduction , 1993 .

[102]  H. Paerl Cyanobacterial carotenoids: their roles in maintaining optimal photosynthetic production among aquatic bloom forming genera , 1984, Oecologia.

[103]  M. Chapman Patterns of spatial and temporal variation of macrofauna under boulders in a sheltered boulder field , 2002 .