Extracellular matrix in vascular morphogenesis and disease: structure versus signal.

[1]  Joshua D. Wythe,et al.  A critical role for elastin signaling in vascular morphogenesis and disease , 2003, Development.

[2]  S. Mochizuki,et al.  Signaling Pathways Transduced through the Elastin Receptor Facilitate Proliferation of Arterial Smooth Muscle Cells* , 2002, The Journal of Biological Chemistry.

[3]  Richard O Hynes,et al.  Integrins Bidirectional, Allosteric Signaling Machines , 2002, Cell.

[4]  D. Chitayat,et al.  Connection between elastin haploinsufficiency and increased cell proliferation in patients with supravalvular aortic stenosis and Williams-Beuren syndrome. , 2002, American journal of human genetics.

[5]  S. Santoro,et al.  The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis. , 2002, The American journal of pathology.

[6]  W. Vogel,et al.  Tyrosine Kinase Activity of Discoidin Domain Receptor 1 Is Necessary for Smooth Muscle Cell Migration and Matrix Metalloproteinase Expression , 2002, Circulation research.

[7]  J. Schwarzbauer,et al.  Elastic Fibers: Building Bridges Between Cells and Their Matrix , 2002, Current Biology.

[8]  Clair Baldock,et al.  Fibrillin: from microfibril assembly to biomechanical function. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[9]  Masashi Yanagisawa,et al.  Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo , 2002, Nature.

[10]  Tasuku Honjo,et al.  Fibulin-5/DANCE is essential for elastogenesis in vivo , 2002, Nature.

[11]  C. Little,et al.  Integrins in vascular development. , 2001, Circulation research.

[12]  F. Fougerousse,et al.  α11β1 Integrin Is a Receptor for Interstitial Collagens Involved in Cell Migration and Collagen Reorganization on Mesenchymal Nonmuscle Cells , 2001 .

[13]  A. Aszódi,et al.  Functional consequences of integrin gene mutations in mice. , 2001, Circulation research.

[14]  L. Sakai,et al.  Regulation of limb patterning by extracellular microfibrils , 2001, The Journal of cell biology.

[15]  J. Goergen,et al.  The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism , 2001, EMBO reports.

[16]  T. Pawson,et al.  Discoidin Domain Receptor 1 Tyrosine Kinase Has an Essential Role in Mammary Gland Development , 2001, Molecular and Cellular Biology.

[17]  W. Vogel,et al.  The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. , 2001, The Journal of clinical investigation.

[18]  E. Brown,et al.  Integrin-associated protein (CD47) and its ligands. , 2001, Trends in cell biology.

[19]  P. D. del Nido,et al.  Congenital supravalvar aortic stenosis: a simple lesion? , 2001, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[20]  H. Dietz,et al.  Phenotypic Alteration of Vascular Smooth Muscle Cells Precedes Elastolysis in a Mouse Model of Marfan Syndrome , 2001, Circulation research.

[21]  K. Kivirikko,et al.  Collagens and collagen-related diseases , 2001, Annals of medicine.

[22]  P. Handford,et al.  Fibrillin: from domain structure to supramolecular assembly. , 2000, Matrix biology : journal of the International Society for Matrix Biology.

[23]  K. Weinberg,et al.  Contact with fibrillar collagen inhibits melanoma cell proliferation by up-regulating p27KIP1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  E. Raines,et al.  The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease , 2000, International journal of experimental pathology.

[25]  P. Byers,et al.  Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. , 2000, The New England journal of medicine.

[26]  P. Robinson,et al.  The molecular genetics of Marfan syndrome and related microfibrillopathies , 2000, Journal of medical genetics.

[27]  R. Hynes,et al.  Extensive Vasculogenesis, Angiogenesis, and Organogenesis Precede Lethality in Mice Lacking All αv Integrins , 1998, Cell.

[28]  A. Pozzi,et al.  Integrin α1β1 Mediates a Unique Collagen-dependent Proliferation Pathway In Vivo , 1998, The Journal of cell biology.

[29]  Dean Y. Li,et al.  Elastin is an essential determinant of arterial morphogenesis , 1998, Nature.

[30]  S. Wilson,et al.  Effect of Coacervated α-Elastin on Proliferation of Vascular Smooth Muscle and Endothelial Cells , 1998 .

[31]  J. Callahan,et al.  The 67-kDa Enzymatically Inactive Alternatively Spliced Variant of β-Galactosidase Is Identical to the Elastin/Laminin-binding Protein* , 1998, Journal of Biological Chemistry.

[32]  T. Pawson,et al.  The discoidin domain receptor tyrosine kinases are activated by collagen. , 1997, Molecular cell.

[33]  H. Dietz,et al.  Targetting of the gene encoding fibrillin–1 recapitulates the vascular aspect of Marfan syndrome , 1997, Nature Genetics.

[34]  C. Morris,et al.  Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. , 1997, Human molecular genetics.

[35]  R. Jaenisch,et al.  Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[36]  James M. Roberts,et al.  Fibrillar Collagen Inhibits Arterial Smooth Muscle Proliferation through Regulation of Cdk2 Inhibitors , 1996, Cell.

[37]  R. Timpl,et al.  Cell adhesion and integrin binding to recombinant human fibrillin‐1 , 1996, FEBS letters.

[38]  A. Hinek Nature and the multiple functions of the 67-kD elastin-/laminin binding protein. , 1994, Cell adhesion and communication.

[39]  J. Rosenbloom,et al.  Extracellular matrix 4: The elastic fiber , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[40]  Colleen A. Morris,et al.  The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis , 1993, Cell.

[41]  M T Davisson,et al.  Defective pro alpha 2(I) collagen synthesis in a recessive mutation in mice: a model of human osteogenesis imperfecta. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. Kramer,et al.  β1 And β3 integrins have different roles in the adhesion and migration of vascular smooth muscle cells on extracellular matrix , 1992 .

[43]  B. Zetter,et al.  Identification of a tumor cell receptor for VGVAPG, an elastin-derived chemotactic peptide , 1988, The Journal of cell biology.

[44]  S. Barondes,et al.  The elastin receptor: a galactoside-binding protein. , 1988, Science.

[45]  R. Mecham,et al.  Kinetics of receptor-mediated binding of tropoelastin to ligament fibroblasts. , 1988, The Journal of biological chemistry.

[46]  H. Nakamura,et al.  Substratum‐Bound Elastin Pept ide In hi bits Aortic Smooth Muscle Cell Migration in Vitro , 1987, Arteriosclerosis.

[47]  W. Hornebeck,et al.  Inducible adhesion of mesenchymal cells to elastic fibers: elastonectin. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[48]  R. Jaenisch,et al.  Embryonic lethal mutation in mouse collagen I gene causes rupture of blood vessels and is associated with erythropoietic and mesenchymal cell death , 1984, Cell.

[49]  R. Timpl,et al.  Collagen fibril formation during embryogenesis. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. Glagov,et al.  A Lamellar Unit of Aortic Medial Structure and Function in Mammals , 1967, Circulation research.

[51]  D. Gullberg,et al.  Collagen-binding I domain integrins--what do they do? , 2002, Progress in histochemistry and cytochemistry.

[52]  G. Faury Function-structure relationship of elastic arteries in evolution: from microfibrils to elastin and elastic fibres. , 2001, Pathologie et biologie.

[53]  F. Giancotti,et al.  Complexity and specificity of integrin signalling , 2000, Nature Cell Biology.

[54]  H. Kuivaniemi,et al.  Mutations in fibrillar collagens (types I, II, III, and XI), fibril‐associated collagen (type IX), and network‐forming collagen (type X) cause a spectrum of diseases of bone, cartilage, and blood vessels , 1997, Human mutation.

[55]  M. Yamamoto,et al.  Type I collagen promotes modulation of cultured rabbit arterial smooth muscle cells from a contractile to a synthetic phenotype. , 1993, Experimental cell research.

[56]  M. Yamamoto,et al.  Identification of the phenotypic modulation of rabbit arterial smooth muscle cells in primary culture by flow cytometry. , 1992, Experimental cell research.