Bayesian Analysis for Penalized Spline Regression Using WinBUGS

Penalized splines can be viewed as BLUPs in a mixed model framework, which allows the use of mixed model software for smoothing. Thus, software originally developed for Bayesian analysis of mixed models can be used for penalized spline regression. Bayesian inference for nonparametric models enjoys the flexibility of nonparametric models and the exact inference provided by the Bayesian inferential machinery. This paper provides a simple, yet comprehensive, set of programs for the implementation of nonparametric Bayesian analysis in WinBUGS. Good mixing properties of the MCMC chains are obtained by using low-rank thin-plate splines, while simulation times per iteration are reduced employing WinBUGS specific computational tricks.

[1]  J. Grego,et al.  Fast stable direct fitting and smoothness selection for generalized additive models , 2006, 0709.3906.

[2]  Andrew Gelman,et al.  R2WinBUGS: A Package for Running WinBUGS from R , 2005 .

[3]  Ciprian M. Crainiceanu,et al.  Restricted Likelihood Ratio Tests in Nonparametric Longitudinal Models Short title: Restricted LR Tests in Longitudinal Models , 2004 .

[4]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[5]  T. P. Ryan Semiparametric Regression , 2004 .

[6]  M. Wand,et al.  Smoothing with Mixed Model Software , 2004 .

[7]  D. Ruppert,et al.  Likelihood ratio tests in linear mixed models with one variance component , 2003 .

[8]  Jery R. Stedinger,et al.  Modeling the U.S. national distribution of waterborne pathogen concentrations with application to Cryptosporidium parvum , 2003 .

[9]  Matt P. Wand,et al.  Smoothing and mixed models , 2003, Comput. Stat..

[10]  D. Ruppert Selecting the Number of Knots for Penalized Splines , 2002 .

[11]  Charles Kooperberg,et al.  Spline Adaptation in Extended Linear Models (with comments and a rejoinder by the authors , 2002 .

[12]  Scott M. Berry,et al.  Bayesian Smoothing and Regression Splines for Measurement Error Problems , 2002 .

[13]  Sujit K. Ghosh,et al.  Essential Wavelets for Statistical Applications and Data Analysis , 2001, Technometrics.

[14]  R. Kass,et al.  Reference Bayesian Methods for Generalized Linear Mixed Models , 2000 .

[15]  David Ruppert,et al.  Variable Selection and Function Estimation in Additive Nonparametric Regression Using a Data-Based Prior: Comment , 1999 .

[16]  C. Gatsonis Case Studies in Bayesian Statistics , 1998 .

[17]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[18]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[19]  R. M. Wharton Model-Free Curve Estimation , 1995 .

[20]  M. C. Jones,et al.  Model-Free Curve Estimation , 1993 .

[21]  Ernst R. Berndt,et al.  The Practice of Econometrics: Classic and Contemporary. , 1992 .

[22]  Robert Fildes,et al.  The practice of econometrics: Classical and contemporary: Ernst R. Berndt, (Addison-Wesley Publishing company, Reading, Mass., 1991), pp. 702, $18.95 , 1992 .

[23]  G. Wahba Spline Models for Observational Data , 1990 .

[24]  B. Yandell Spline smoothing and nonparametric regression , 1989 .

[25]  D. M. Allen,et al.  Analysis of growth and dose response curves. , 1969, Biometrics.

[26]  Jery R. Stedinger,et al.  Improving MCMC Mixing for a GLMM Describing Pathogen Concentrations in Water Supplies , 2002 .

[27]  Yuedong Wang Mixed effects smoothing spline analysis of variance , 1998 .

[28]  M. Hansen,et al.  Spline Adaptation in Extended Linear Models , 1998 .

[29]  P L Meinhardt,et al.  Epidemiologic aspects of human cryptosporidiosis and the role of waterborne transmission. , 1996, Epidemiologic reviews.

[30]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[31]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[32]  S. Zeger,et al.  Analysis of longitudinal data , 1994 .

[33]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .