Energy and Resource Saving of Steelmaking Process: Utilization of Innovative Multi-phase Flux During Dephosphorization Process

[1]  H. Matsuura,et al.  Phase Equilibrium for the CaO–SiO2–FeO–5mass%P2O5–5mass%Al2O3 System for Dephosphorization of Hot Metal Pretreatment , 2013 .

[2]  H. Matsuura,et al.  Phase Relationship for the CaO–SiO2–FeO–5 mass%P2O5 System with Oxygen Partial Pressure of 10−8 atm at 1673 and 1623 K , 2013 .

[3]  H. Matsuura,et al.  Phase Relationship of CaO-SiO2-FeO-5 mass pct P2O5 System with Low Oxygen Partial Pressure at 1673 K (1400 °C) , 2012, Metallurgical and Materials Transactions B.

[4]  M. Iwase,et al.  Thermodynamic Properties of Solid Solutions between Di-calcium Silicate and Tri-calcium Phosphate , 2012 .

[5]  H. Shibata,et al.  Distribution of P2O5 between Solid Solution of 2CaO·SiO2–3CaO·P2O5 and Liquid Phase , 2010 .

[6]  H. Matsuura,et al.  Dissolution Behavior of Solid 5CaO·SiO2·P2O5 in CaO-SiO2-FeOx Slag , 2010 .

[7]  H. Matsuura,et al.  Reaction Behavior of P2O5 at the Interface between Solid 2CaO·SiO2 and Liquid CaO–SiO2–FeOx–P2O5 Slags Saturated with Solid 5CaO·SiO2·P2O5 at 1 573 K , 2010 .

[8]  M. Iwase,et al.  Formation Free Energies of Solid Solution between Tri‐Calcium Phosphate and Di‐Calcium Silicate , 2010 .

[9]  日野 光兀,et al.  Thermodynamic data for steelmaking , 2010 .

[10]  H. Shibata,et al.  Mass Transfer of P2O5 between Liquid Slag and Solid Solution of 2CaO·SiO2 and 3CaO·P2O5 , 2009 .

[11]  H. Matsuura,et al.  Condensation of P2O5 at the Interface between 2CaO·SiO2 and CaO–SiO2–FeOx–P2O5 Slag , 2009 .

[12]  宏行 松浦,et al.  1673Kにおける固体2CaO·SiO2–FeOx–CaO–SiO2–P2O5スラグ界面でのりんの挙動 , 2009 .

[13]  F. Tsukihashi 特集号「マルチフェーズフラックスを利用した新精錬プロセス技術」に寄せて , 2009 .

[14]  Kenichiro Naito,et al.  Estimation of Oxygen Potential at Slag/Metal Interface and Effect of Initial Slag Condition on Hot Metal Dephosphorization , 2009 .

[15]  H. Matsuura,et al.  Microscopic Formation Mechanisms of P2O5-containing Phase at the Interface between Solid CaO and Molten Slag , 2009 .

[16]  A. Lahiri,et al.  Phosphorus Partition between Liquid Steel and CaO-SiO2-P2O5-MgO Slag Containing Low FeO , 2007 .

[17]  F. Tsukihashi,et al.  Formation Reaction of Phosphate Compound in Multi Phase Flux at 1573 K , 2007 .

[18]  F. Tsukihashi,et al.  Reaction Mechanism between Solid CaO and FeOx–CaO–SiO2–P2O5 Slag at 1 573 K , 2006 .

[19]  R. Inoue,et al.  Mechanism of dephosphorization with CaO-SiO2-FetO slags containing mesoscopic scale 2CaO·SiO2 particles , 2006 .

[20]  R. Inoue,et al.  Phosphorous Partition between 2CaO·SiO2 Particles and CaO–SiO2–FetO Slags , 2006 .

[21]  F. Tsukihashi,et al.  Effect of Al2O3 and MgO additions on liquidus for the CaO-SiO2-FeOx system at 1573 K , 2005 .

[22]  E. T. Turkdogan Assessment of P2O5 Activity Coefficients in Molten Slags , 2000 .

[23]  Shiro Ban-Ya,et al.  Mathematical Expression of Slag-Metal Reactions in Steelmaking Process by Quadratic Formalism Based on the Regular Solution Model , 1993 .

[24]  E. T. Turkdogan Physicochemical Properties of Molten Slags and Glasses , 1983 .

[25]  Nobuo Sano,et al.  Phosphorus Distribution between Solid 2CaO·SiO2 and Molten CaO-SiO2-FeO-Fe2O3 Slags , 1982 .

[26]  彬 矢沢,et al.  固体鉄飽和Fe-O-CaO系スラグの熱力学 , 1980 .

[27]  H. Heymann,et al.  Subsolidus Relations in the System 2CaO·SiO2‐3CaO·P2O5 , 1969 .