Energy and Resource Saving of Steelmaking Process: Utilization of Innovative Multi-phase Flux During Dephosphorization Process
暂无分享,去创建一个
[1] H. Matsuura,et al. Phase Equilibrium for the CaO–SiO2–FeO–5mass%P2O5–5mass%Al2O3 System for Dephosphorization of Hot Metal Pretreatment , 2013 .
[2] H. Matsuura,et al. Phase Relationship for the CaO–SiO2–FeO–5 mass%P2O5 System with Oxygen Partial Pressure of 10−8 atm at 1673 and 1623 K , 2013 .
[3] H. Matsuura,et al. Phase Relationship of CaO-SiO2-FeO-5 mass pct P2O5 System with Low Oxygen Partial Pressure at 1673 K (1400 °C) , 2012, Metallurgical and Materials Transactions B.
[4] M. Iwase,et al. Thermodynamic Properties of Solid Solutions between Di-calcium Silicate and Tri-calcium Phosphate , 2012 .
[5] H. Shibata,et al. Distribution of P2O5 between Solid Solution of 2CaO·SiO2–3CaO·P2O5 and Liquid Phase , 2010 .
[6] H. Matsuura,et al. Dissolution Behavior of Solid 5CaO·SiO2·P2O5 in CaO-SiO2-FeOx Slag , 2010 .
[7] H. Matsuura,et al. Reaction Behavior of P2O5 at the Interface between Solid 2CaO·SiO2 and Liquid CaO–SiO2–FeOx–P2O5 Slags Saturated with Solid 5CaO·SiO2·P2O5 at 1 573 K , 2010 .
[8] M. Iwase,et al. Formation Free Energies of Solid Solution between Tri‐Calcium Phosphate and Di‐Calcium Silicate , 2010 .
[9] 日野 光兀,et al. Thermodynamic data for steelmaking , 2010 .
[10] H. Shibata,et al. Mass Transfer of P2O5 between Liquid Slag and Solid Solution of 2CaO·SiO2 and 3CaO·P2O5 , 2009 .
[11] H. Matsuura,et al. Condensation of P2O5 at the Interface between 2CaO·SiO2 and CaO–SiO2–FeOx–P2O5 Slag , 2009 .
[12] 宏行 松浦,et al. 1673Kにおける固体2CaO·SiO2–FeOx–CaO–SiO2–P2O5スラグ界面でのりんの挙動 , 2009 .
[13] F. Tsukihashi. 特集号「マルチフェーズフラックスを利用した新精錬プロセス技術」に寄せて , 2009 .
[14] Kenichiro Naito,et al. Estimation of Oxygen Potential at Slag/Metal Interface and Effect of Initial Slag Condition on Hot Metal Dephosphorization , 2009 .
[15] H. Matsuura,et al. Microscopic Formation Mechanisms of P2O5-containing Phase at the Interface between Solid CaO and Molten Slag , 2009 .
[16] A. Lahiri,et al. Phosphorus Partition between Liquid Steel and CaO-SiO2-P2O5-MgO Slag Containing Low FeO , 2007 .
[17] F. Tsukihashi,et al. Formation Reaction of Phosphate Compound in Multi Phase Flux at 1573 K , 2007 .
[18] F. Tsukihashi,et al. Reaction Mechanism between Solid CaO and FeOx–CaO–SiO2–P2O5 Slag at 1 573 K , 2006 .
[19] R. Inoue,et al. Mechanism of dephosphorization with CaO-SiO2-FetO slags containing mesoscopic scale 2CaO·SiO2 particles , 2006 .
[20] R. Inoue,et al. Phosphorous Partition between 2CaO·SiO2 Particles and CaO–SiO2–FetO Slags , 2006 .
[21] F. Tsukihashi,et al. Effect of Al2O3 and MgO additions on liquidus for the CaO-SiO2-FeOx system at 1573 K , 2005 .
[22] E. T. Turkdogan. Assessment of P2O5 Activity Coefficients in Molten Slags , 2000 .
[23] Shiro Ban-Ya,et al. Mathematical Expression of Slag-Metal Reactions in Steelmaking Process by Quadratic Formalism Based on the Regular Solution Model , 1993 .
[24] E. T. Turkdogan. Physicochemical Properties of Molten Slags and Glasses , 1983 .
[25] Nobuo Sano,et al. Phosphorus Distribution between Solid 2CaO·SiO2 and Molten CaO-SiO2-FeO-Fe2O3 Slags , 1982 .
[26] 彬 矢沢,et al. 固体鉄飽和Fe-O-CaO系スラグの熱力学 , 1980 .
[27] H. Heymann,et al. Subsolidus Relations in the System 2CaO·SiO2‐3CaO·P2O5 , 1969 .