A peridynamic approach to solving general discrete dislocation dynamics problems in plasticity and fracture: Part I. model description and verification

[1]  M. Zha,et al.  Enhanced superplasticity achieved by disclination-dislocation reactions in a fine-grained low-alloyed Magnesium system , 2022, International Journal of Plasticity.

[2]  F. Bobaru,et al.  Analytical Solutions of Peridynamic Equations. Part I: Transient Heat Diffusion , 2022, Journal of Peridynamics and Nonlocal Modeling.

[3]  M. Zaiser,et al.  Size-dependent yield stress in ultrafine-grained polycrystals: A multiscale discrete dislocation dynamics study , 2022, International Journal of Plasticity.

[4]  Yinan Cui,et al.  A discrete-continuous model of three-dimensional dislocation elastodynamics , 2022, International Journal of Plasticity.

[5]  Adam Larios,et al.  A general and fast convolution-based method for peridynamics: applications to elasticity and brittle fracture , 2021, Computer Methods in Applied Mechanics and Engineering.

[6]  M. Fu,et al.  Study of dislocation-twin boundary interaction mechanisms in plastic deformation of TWIP steel by discrete dislocation dynamics and dislocation density-based modeling , 2021 .

[7]  F. Bobaru,et al.  Stochastically homogenized peridynamic model for dynamic fracture analysis of concrete , 2021, Engineering Fracture Mechanics.

[8]  Minsheng Huang,et al.  Effect of multiple hydrogen embrittlement mechanisms on crack propagation behavior of FCC metals: Competition vs. synergy , 2021 .

[9]  S. Chatterjee,et al.  A discrete dislocation dynamics study of precipitate bypass mechanisms in nickel-based superalloys , 2021, 2104.05906.

[10]  Ziguang Chen,et al.  The Role of Boundary Conditions on Convergence Properties of Peridynamic Model for Transient Heat Transfer , 2021, Journal of Scientific Computing.

[11]  Adam Larios,et al.  A fast convolution-based method for peridynamic transient diffusion in arbitrary domains , 2021 .

[12]  F. Bobaru,et al.  A coupled mechano-chemical peridynamic model for pit-to-crack transition in stress-corrosion cracking , 2021 .

[13]  F. Bobaru,et al.  On validating peridynamic models and a phase-field model for dynamic brittle fracture in glass , 2020 .

[14]  A. Pagani,et al.  Coupling three‐dimensional peridynamics and high‐order one‐dimensional finite elements based on local elasticity for the linear static analysis of solid beams and thin‐walled reinforced structures , 2020, International Journal for Numerical Methods in Engineering.

[15]  J. Michler,et al.  3D HR-EBSD Characterization of the plastic zone around crack tips in tungsten single crystals at the micron scale , 2020, Acta Materialia.

[16]  G. Odemer,et al.  Hydrogen - dislocation interactions in a low-copper 7xxx aluminium alloy: About the analysis of interrupted stress corrosion cracking tests , 2020 .

[17]  Yongxing Shen,et al.  A Nonlocal Model for Dislocations with Embedded Discontinuity Peridynamics , 2020, International Journal of Mechanical Sciences.

[18]  Yaxin Zhu,et al.  An efficient 2D discrete dislocation Dynamics-XFEM coupling framework and its application to polycrystal plasticity , 2020 .

[19]  Mukul M. Sharma,et al.  A general peridynamics model for multiphase transport of non-Newtonian compressible fluids in porous media , 2020, J. Comput. Phys..

[20]  Adam Larios,et al.  Efficient Solutions for Nonlocal Diffusion Problems Via Boundary-Adapted Spectral Methods , 2019, Journal of Peridynamics and Nonlocal Modeling.

[21]  May L. Martin,et al.  In situ high energy X-ray diffraction measurement of strain and dislocation density ahead of crack tips grown in hydrogen , 2019, Acta Materialia.

[22]  F. Bobaru,et al.  Pitting, lacy covers, and pit merger in stainless steel: 3D peridynamic models , 2019, Corrosion Science.

[23]  Yaxin Zhu,et al.  Simulation on crack propagation vs. crack-tip dislocation emission by XFEM-based DDD scheme , 2019, International Journal of Plasticity.

[24]  R. Lipton,et al.  Numerical convergence of finite difference approximations for state based peridynamic fracture models , 2018, Computer Methods in Applied Mechanics and Engineering.

[25]  Takayuki Kitamura,et al.  In situ observation on formation process of nanoscale cracking during tension-compression fatigue of single crystal copper micron-scale specimen , 2018, Acta Materialia.

[26]  Zhiliang Zhang,et al.  Effect of Hydrogen on the Collective Behavior of Dislocations in the Case of Nanoindentation , 2018 .

[27]  Florin Bobaru,et al.  Surface corrections for peridynamic models in elasticity and fracture , 2017, Computational Mechanics.

[28]  F. Bobaru,et al.  Corrosion-induced embrittlement in ZK60A Mg alloy , 2018 .

[29]  F. Bobaru,et al.  Peridynamic Modeling of Repassivation in Pitting Corrosion of Stainless Steel , 2017 .

[30]  V. Deshpande,et al.  A discrete dislocation analysis of hydrogen-assisted mode-I fracture , 2017 .

[31]  F. Bobaru,et al.  Elastic vortices and thermally-driven cracks in brittle materials with peridynamics , 2017, International Journal of Fracture.

[32]  F. Bobaru,et al.  MODELING THE EVOLUTION OF FATIGUE FAILURE WITH PERIDYNAMICS , 2017 .

[33]  F. Bobaru,et al.  A constructive peridynamic kernel for elasticity , 2016 .

[34]  Mirco Zaccariotto,et al.  An effective way to couple FEM meshes and Peridynamics grids for the solution of static equilibrium problems , 2016 .

[35]  Pablo Seleson,et al.  Convergence studies in meshfree peridynamic simulations , 2016, Comput. Math. Appl..

[36]  Dennj De Meo,et al.  Modelling of stress-corrosion cracking by using peridynamics , 2016 .

[37]  Minsheng Huang,et al.  Coupled DDD–FEM modeling on the mechanical behavior of microlayered metallic multilayer film at elevated temperature , 2015 .

[38]  Guanfeng Zhang,et al.  A peridynamic model for dynamic fracture in functionally graded materials , 2015 .

[39]  Ziguang Chen,et al.  Peridynamic modeling of pitting corrosion damage , 2015 .

[40]  Minsheng Huang,et al.  Discrete dislocation modeling on interaction between type-I blunt crack and cylindrical void in single crystals , 2015 .

[41]  Yuzeng Chen,et al.  Hydrogen diffusivities as a measure of relative dislocation densities in palladium and increase of the density by plastic deformation in the presence of dissolved hydrogen , 2015 .

[42]  Qiang Du,et al.  Asymptotically Compatible Schemes and Applications to Robust Discretization of Nonlocal Models , 2014, SIAM J. Numer. Anal..

[43]  Steven F. Henke,et al.  Mesh sensitivity in peridynamic simulations , 2014, Comput. Phys. Commun..

[44]  F. Bobaru,et al.  The Meaning, Selection, and Use of the Peridynamic Horizon and its Relation to Crack Branching in Brittle Materials , 2012, International Journal of Fracture.

[45]  G. Monnet,et al.  Modeling crystal plasticity with dislocation dynamics simulations: The ’microMegas’ code , 2011 .

[46]  Youn Doh Ha,et al.  ADAPTIVE REFINEMENT AND MULTISCALEMODELING IN 2D PERIDYNAMICS , 2011 .

[47]  Ted Belytschko,et al.  An extended finite element method for dislocations in complex geometries: Thin films and nanotubes , 2009 .

[48]  D. Srolovitz,et al.  Effect of material properties on liquid metal embrittlement in the Al–Ga system , 2009 .

[49]  S. Silling,et al.  Convergence, adaptive refinement, and scaling in 1D peridynamics , 2009 .

[50]  W. Crone,et al.  Fracture in single crystal NiTi , 2008 .

[51]  Jaafar A. El-Awady,et al.  A self-consistent boundary element, parametric dislocation dynamics formulation of plastic flow in finite volumes , 2008 .

[52]  Akiyuki Takahashi,et al.  A computational method for dislocation-precipitate interaction , 2008 .

[53]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[54]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[55]  W. Curtin,et al.  Bimaterial interface fracture: A discrete dislocation model , 2005 .

[56]  S. Silling,et al.  Peridynamic modeling of membranes and fibers , 2004 .

[57]  A. Needleman,et al.  A discrete dislocation analysis of rate effects on mode I crack growth , 2001 .

[58]  Vikram Deshpande,et al.  Discrete dislocation plasticity and crack tip fields in single crystals , 2001 .

[59]  Alberto M. Cuitiño,et al.  Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations , 2001 .

[60]  C. Ribbens,et al.  Multiple-dislocation emission from the crack tip in the ductile fracture of Al , 2001 .

[61]  Ya-Xiang Yuan,et al.  An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization , 2001, Ann. Oper. Res..

[62]  A. Needleman,et al.  A discrete dislocation analysis of mode I crack growth , 2000 .

[63]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[64]  M. Fivel,et al.  Developing rigorous boundary conditions to simulations of discrete dislocation dynamics , 1999 .

[65]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[66]  L. Freund The Mechanics of Dislocations in Strained-Layer Semiconductor Materials , 1993 .

[67]  John Dundurs,et al.  Interaction between an edge dislocation and a circular inclusion , 1964 .

[68]  M. Peach,et al.  THE FORCES EXERTED ON DISLOCATIONS AND THE STRESS FIELDS PRODUCED BY THEM , 1950 .