Interdiction Games on Markovian PERT Networks

In a stochastic interdiction game a proliferator aims to minimize the expected duration of a nuclear weapons development project, and an interdictor endeavors to maximize the project duration by delaying some of the project tasks. We formulate static and dynamic versions of the interdictor’s decision problem where the interdiction plan is either precommitted or adapts to new information revealed over time, respectively. The static model gives rise to a stochastic program, whereas the dynamic model is formalized as a multiple optimal stopping problem in continuous time and with decision-dependent information. Under a memoryless probabilistic model for the task durations, we prove that the static model reduces to a mixed-integer linear program, whereas the dynamic model reduces to a finite Markov decision process in discrete time that can be solved via efficient value iteration. We then generalize the dynamic model to account for uncertainty in the outcomes of the interdiction actions. We also discuss a cra...

[1]  Marc Lambrecht,et al.  Scheduling Markovian PERT networks to maximize the net present value , 2010, Oper. Res. Lett..

[2]  Laurent El Ghaoui,et al.  Robust Control of Markov Decision Processes with Uncertain Transition Matrices , 2005, Oper. Res..

[3]  Mor Harchol-Balter,et al.  Closed form solutions for mapping general distributions to quasi-minimal PH distributions , 2006, Perform. Evaluation.

[4]  Herbert A. David,et al.  Order Statistics , 2011, International Encyclopedia of Statistical Science.

[5]  David P. Morton,et al.  Stochastic Network Interdiction , 1998, Oper. Res..

[6]  R. K. Wood,et al.  Bilevel Network Interdiction Models: Formulations and Solutions , 2011 .

[7]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[8]  Vidyadhar G. Kulkarni,et al.  Markov and Markov-Regenerative pert Networks , 1986, Oper. Res..

[9]  Jeffrey W. Herrmann Handbook of operations research for homeland security , 2013 .

[10]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[11]  Joseph G. Szmerekovsky,et al.  Scheduling projects with stochastic activity duration to maximize expected net present value , 2009, Eur. J. Oper. Res..

[12]  Jane N. Hagstrom,et al.  Computational complexity of PERT problems , 1988, Networks.

[13]  Hanif D. Sherali,et al.  A Dynamic Network Interdiction Problem , 2010, Informatica.

[14]  M. Kendall Theoretical Statistics , 1956, Nature.

[15]  David A. Castañón,et al.  Stochastic dynamic network interdiction games , 2012, 2012 American Control Conference (ACC).

[16]  Bayu Jayawardhana,et al.  Proceedings of the 2012 American Control Conference , 2012 .

[17]  Daniel Kuhn,et al.  Robust Markov Decision Processes , 2013, Math. Oper. Res..

[18]  Louis Anthony Cox,et al.  Wiley encyclopedia of operations research and management science , 2011 .

[19]  Edieal J. Pinker,et al.  Technical Note - Managing a Secret Project , 2013, Oper. Res..

[20]  Scott D. Sagan,et al.  The Causes of Nuclear Weapons Proliferation , 2011 .

[21]  Mor Harchol-Balter,et al.  Performance Modeling and Design of Computer Systems: Queueing Theory in Action , 2013 .

[22]  J. Doob Stochastic processes , 1953 .

[23]  Garud Iyengar,et al.  Robust Dynamic Programming , 2005, Math. Oper. Res..

[24]  R. Ash,et al.  Real analysis and probability , 1975 .

[25]  M. Dufwenberg Game theory. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[26]  J. Cole Smith,et al.  Basic Interdiction Models , 2010 .

[27]  David P. Morton,et al.  Interdiction Models and Applications , 2013 .

[28]  Andrew J. Schaefer,et al.  SPAR: stochastic programming with adversarial recourse , 2006, Oper. Res. Lett..

[29]  David A. Castañón,et al.  Dynamic network interdiction games with imperfect information and deception , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[30]  S. Zionts,et al.  Programming with linear fractional functionals , 1968 .

[31]  Gerald G. Brown,et al.  Interdicting a Nuclear-Weapons Project , 2009, Oper. Res..

[32]  Gerald G. Brown,et al.  Anatomy of a Project to Produce a First Nuclear Weapon , 2006 .

[33]  Anne Lohrli Chapman and Hall , 1985 .

[34]  Meir J. Rosenblatt,et al.  Activity Delay in Stochastic Project Networks , 1997, Oper. Res..

[35]  Erik Demeulemeester,et al.  RanGen: A Random Network Generator for Activity-on-the-Node Networks , 2003, J. Sched..

[36]  Daniel Kuhn,et al.  Multi-resource allocation in stochastic project scheduling , 2012, Ann. Oper. Res..

[37]  Michael O. Hardimon The anatomy of the project , 1994 .

[38]  Johannes O. Royset,et al.  On the Complexity of Delaying an Adversary’s Project , 2005 .