Strong and Weak Optimizations in Classical and Quantum Models of Stochastic Processes

Among the predictive hidden Markov models that describe a given stochastic process, the {\epsilon}-machine is strongly minimal in that it minimizes every Renyi-based memory measure. Quantum models can be smaller still. In contrast with the {\epsilon}-machine's unique role in the classical setting, however, among the class of processes described by pure-state hidden quantum Markov models, there are those for which there does not exist any strongly minimal model. Quantum memory optimization then depends on which memory measure best matches a given problem circumstance.

[1]  Marshall,et al.  [Springer Series in Statistics] Inequalities: Theory of Majorization and Its Applications || Matrix Theory , 2011 .

[2]  Ryan Tan,et al.  Towards quantifying complexity with quantum mechanics , 2014, 1404.6255.

[3]  Karoline Wiesner,et al.  Quantum mechanics can reduce the complexity of classical models , 2011, Nature Communications.

[4]  E. Lorenz The problem of deducing the climate from the governing equations , 1964 .

[5]  James P. Crutchfield,et al.  Occam’s Quantum Strop: Synchronizing and Compressing Classical Cryptic Processes via a Quantum Channel , 2015, Scientific Reports.

[6]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[7]  James P. Crutchfield,et al.  Exact Synchronization for Finite-State Sources , 2010, ArXiv.

[8]  M. Tomamichel A framework for non-asymptotic quantum information theory , 2012, 1203.2142.

[9]  Nihat Ay,et al.  On the Generative Nature of Prediction , 2009, Adv. Complex Syst..

[10]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[11]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[12]  Renato Renner,et al.  Smooth Renyi entropy and applications , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[13]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[14]  James P. Crutchfield,et al.  Synchronization and Control in Intrinsic and Designed Computation: An Information-Theoretic Analysis of Competing Models of Stochastic Computation , 2010, Chaos.

[15]  Eld,et al.  Identifying functional thermodynamics in autonomous Maxwellian ratchets , 2016 .

[16]  James P. Crutchfield,et al.  Prediction and Generation of Binary Markov Processes: Can a Finite-State Fox Catch a Markov Mouse? , 2018, Chaos.

[17]  James P. Crutchfield,et al.  Equivalence of History and Generator Epsilon-Machines , 2011, ArXiv.

[18]  James P. Crutchfield,et al.  Structure and Randomness of Continuous-Time, Discrete-Event Processes , 2017, ArXiv.

[19]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[20]  M. Gu,et al.  Practical Unitary Simulator for Non-Markovian Complex Processes. , 2017, Physical review letters.

[21]  James P. Crutchfield,et al.  Computational Mechanics: Pattern and Prediction, Structure and Simplicity , 1999, ArXiv.

[22]  K. Wiesner,et al.  Hidden Quantum Markov Models and non-adaptive read-out of many-body states , 2010, 1002.2337.

[23]  Nicole Yunger Halpern,et al.  The resource theory of informational nonequilibrium in thermodynamics , 2013, 1309.6586.

[24]  M. Gu,et al.  Matrix Product States for Quantum Stochastic Modeling. , 2018, Physical review letters.

[25]  J. Crutchfield,et al.  Extreme Quantum Advantage when Simulating Classical Systems with Long-Range Interaction , 2017, Scientific Reports.

[26]  Daniel Ray Upper,et al.  Theory and algorithms for hidden Markov models and generalized hidden Markov models , 1998 .

[27]  James P. Crutchfield,et al.  Spectral Simplicity of Apparent Complexity, Part I: The Nondiagonalizable Metadynamics of Prediction , 2018, Chaos.

[28]  James P. Crutchfield,et al.  Causal Asymmetry in a Quantum World , 2017, Physical Review X.

[29]  Andrew J. P. Garner,et al.  Provably unbounded memory advantage in stochastic simulation using quantum mechanics , 2016, 1609.04408.

[30]  Michal Horodecki,et al.  Extremal distributions under approximate majorization , 2017, Journal of Physics A: Mathematical and Theoretical.

[31]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[32]  Nihat Ay,et al.  Non-sufficient Memories That Are Sufficient for Prediction , 2009, Complex.

[33]  Robert W. Spekkens,et al.  A mathematical theory of resources , 2014, Inf. Comput..

[34]  James P. Crutchfield,et al.  Signatures of Infinity: Nonergodicity and Resource Scaling in Prediction, Complexity, and Learning , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  J. Crutchfield,et al.  The ambiguity of simplicity in quantum and classical simulation , 2017 .

[36]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[37]  J. Crutchfield Between order and chaos , 2011, Nature Physics.

[38]  James P. Crutchfield,et al.  Exact Complexity: The Spectral Decomposition of Intrinsic Computation , 2013, ArXiv.

[39]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[40]  James P. Crutchfield,et al.  Spectral Simplicity of Apparent Complexity, Part II: Exact Complexities and Complexity Spectra , 2017, Chaos.

[41]  G. Grätzer Lattice Theory: Foundation , 1971 .

[42]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[43]  James P. Crutchfield,et al.  A Closed-Form Shave from Occam's Quantum Razor: Exact Results for Quantum Compression , 2015, ArXiv.

[44]  Mile Gu,et al.  Quantum self-assembly of causal architecture for memory-efficient tracking of complex temporal and symbolic dynamics , 2018 .

[45]  Andrew J. P. Garner,et al.  The classical-quantum divergence of complexity in modelling spin chains , 2015, 1511.05738.

[46]  James P. Crutchfield,et al.  Extreme Quantum Advantage for Rare-Event Sampling , 2017, ArXiv.