Dissipative approach to sliding mode observers design for uncertain mechanical systems

Abstract A class of nonlinear uncertain mechanical systems with the Coriolis term, is considered. Since these systems generally do not satisfy the bounded-input-bounded-state property, a global sliding-mode observer with theoretically exact finite-time convergence using dissipative properties, is proposed.

[1]  Jean-Pierre Barbot,et al.  Iterative higher order sliding mode observer for nonlinear systems with unknown inputs , 2010 .

[2]  Leonid M. Fridman,et al.  Second-order sliding-mode observer for mechanical systems , 2005, IEEE Transactions on Automatic Control.

[3]  Mohamed Djemai,et al.  IMPLICIT TRIANGULAR OBSERVER FORM DEDICATED TO A SLIDING MODE OBSERVER FOR SYSTEMS WITH UNKNOWN INPUTS , 2003 .

[4]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[5]  Jaime A. Moreno,et al.  Dissipativity and Design of Unknown Input Observers for Nonlinear Systems , 2004 .

[6]  Jaime A. Moreno,et al.  Dissipative design of unknown input observers for systems with sector nonlinearities , 2011 .

[7]  A. Levant Robust exact differentiation via sliding mode technique , 1998 .

[8]  M. Hautus Strong detectability and observers , 1983 .

[9]  Jaime A. Moreno,et al.  A linear framework for the robust stability analysis of a Generalized Super-Twisting Algorithm , 2009, 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE).

[10]  Leonid M. Fridman,et al.  Higher order sliding-mode observers with scaled dissipative stabilisers , 2018, Int. J. Control.

[11]  Leonid Fridman,et al.  Global sliding-mode observers for a class of mechanical systems with disturbances* , 2016 .

[12]  Christopher Edwards,et al.  On the Development and Application of Sliding Mode Observers , 2002 .

[13]  J. Moreno Lyapunov Approach for Analysis and Design of Second Order Sliding Mode Algorithms , 2011 .

[14]  Jaime A. Moreno,et al.  Observer Design for Nonlinear Systems: A Dissipative Approach , 2004 .

[15]  Alessandro Pisano,et al.  Sliding mode control: A survey with applications in math , 2011, Math. Comput. Simul..

[16]  Alessandro Pisano,et al.  Finite-time converging jump observer for switched linear systems with unknown inputs ☆ , 2011 .

[17]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[18]  Avrie Levent,et al.  Robust exact differentiation via sliding mode technique , 1998, Autom..

[19]  Sarah K. Spurgeon,et al.  Sliding mode observers: a survey , 2008, Int. J. Syst. Sci..

[20]  L. Fridman,et al.  Higher‐order sliding‐mode observer for state estimation and input reconstruction in nonlinear systems , 2008 .

[21]  Darren M. Dawson,et al.  A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems , 2004, Autom..

[22]  K. Deimling Multivalued Differential Equations , 1992 .

[23]  Denis Efimov,et al.  INPUT ESTIMATION VIA SLIDING-MODE DIFFERENTIATION FOR EARLY OFC DETECTION , 2012 .

[24]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[25]  R. Rajamani Observers for Lipschitz nonlinear systems , 1998, IEEE Trans. Autom. Control..

[26]  Jaime A. Moreno Approximate observer error linearization by dissipativity methods , 2005 .

[27]  Gildas Besancon,et al.  Global output feedback tracking control for a class of Lagrangian systems , 2000, Autom..

[28]  R. Ortega,et al.  A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints , 2010, Autom..