Finding Small Stopping Sets in the Tanner Graphs of LDPC Codes

The performance of low-density parity-check (LDPC) codes over the binary erasure channel for a low erasure probability is limited by small stopping sets. The frame error rate over the additive white Gaussian noise (AWGN) channel for a high signal-to-noise ratio is limited by small trapping sets and by the minimum distance of the LDPC code, which is equal to the codeword with the minimal Hamming weight. In this paper, we present a simple and fast algorithm based on the error impulse method to find small stopping sets in the Tanner graphs of LDPC codes. Since a codeword with small Hamming weight can be represented by a special stopping set, the algorithm can also be used to find the minimum distance of LDPC codes. Furthermore, we use the size of the small stopping sets and the minimum distance of the code to calculate asymptotic performance bounds for LDPC codes transmitted over the binary erasure and the AWGN channel, respectively and compare the bounds with simulations.

[1]  David J. C. MacKay,et al.  Comparison of constructions of irregular Gallager codes , 1999, IEEE Trans. Commun..

[2]  Gerd Richter,et al.  On a Construction Method of Irregular LDPC Codes Without Small Stopping Sets , 2006, 2006 IEEE International Conference on Communications.

[3]  Claude Berrou,et al.  Computing the minimum distance of linear codes by the error impulse method , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[4]  Martin Bossert,et al.  Optimization of a reduced-complexity decoding algorithm for LDPC codes by density evolution , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[5]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[6]  Marc P. C. Fossorier,et al.  Corrections to "Shuffled Iterative Decoding" , 2005, IEEE Trans. Commun..

[7]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[8]  Alexander Vardy,et al.  The intractability of computing the minimum distance of a code , 1997, IEEE Trans. Inf. Theory.

[9]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[10]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[11]  Richard D. Wesel,et al.  Selective avoidance of cycles in irregular LDPC code construction , 2004, IEEE Transactions on Communications.

[12]  Francesco Sottile,et al.  Design of variable-rate irregular LDPC codes with low error floor , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[13]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[14]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[15]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[16]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[17]  Fred Daneshgaran,et al.  Information Theory An algorithm for the computation of the minimum distance of LDPC codes , 2006, Eur. Trans. Telecommun..

[18]  Evangelos Eleftheriou,et al.  On the computation of the minimum distance of low-density parity-check codes , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[19]  C. Berrou,et al.  Computing the minimum distances of linear codes by the error impulse method , 2002, Proceedings IEEE International Symposium on Information Theory,.

[20]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[21]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[22]  Marc P. C. Fossorier,et al.  Shuffled iterative decoding , 2005, IEEE Transactions on Communications.

[23]  David J. C. MacKay,et al.  Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check cCodes , 2003, MFCSIT.

[24]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.