BACKGROUND
Germline mutations in telomerase and other telomere maintenance genes manifest in the premature aging short telomere syndromes. Myelodysplastic syndromes and acute myeloid leukemia (MDS/AML) account for 75% of associated malignancies, but how these cancers overcome the inherited telomere defect is unknown.
METHODS
We used ultra-deep targeted sequencing to detect somatic reversion mutations in 17 candidate telomere lengthening genes among controls and short telomere syndrome patients with and without MDS/AML and we tested the functional significance of these mutations.
RESULTS
While no controls carried somatic mutations in telomere maintenance genes, 29% (16 of 56) of adults with germline telomere maintenance defects carried at least one (P<0.001) and 13% (7 of 56) had 2 or more. In addition to TERT promoter mutations which were present in 19%, we identified POT1 and TERF2IP mutations in 13%. POT1 mutations impaired telomere binding in vitro and some mutations were identical to ones seen in familial melanoma associated with longer telomere length. Exclusively in patients with germline defects in telomerase RNA (TR), we identified somatic mutations in nuclear RNA exosome genes, RBM7, SKIV2L2, and DIS3, where loss-of-function upregulates mature TR levels. Somatic reversion events in six telomere-related genes were more prevalent in patients who were MDS/AML-free (P = 0.02, RR 4.4, 95% CI 1.2-16.7), and no MDS/AML patient had more than one reversion mutation.
CONCLUSIONS
Our data identify diverse adaptive somatic mechanisms in the short telomere syndrome; they raise the possibility that their presence alleviates the telomere crisis that promotes transformation to MDS/AML.