Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles.

Richard A. Moore | Lisle E. Mose | David I Heiman | C. Sander | E. Mardis | L. Chin | G. Getz | M. Meyerson | L. Fulton | C. Perou | J. Weinstein | G. Mills | D. Wheeler | M. McLellan | Heather K. Schmidt | R. Verhaak | R. Beroukhim | Nicolas Stransky | P. Laird | D. Weisenberger | S. Baylin | D. Hayes | K. Hoadley | S. Balu | T. Shelton | S. Morris | M. Ferguson | J. Schein | M. Marra | N. Thiessen | Steven J. M. Jones | R. Holt | A. G. Robertson | Angela Tam | P. Mieczkowski | J. Parker | Jaegil Kim | G. Saksena | Douglas Voet | M. Noble | Pei Lin | David I. Heiman | J. Kocher | Juok Cho | A. Mungall | K. Mungall | C. Fronick | Adrian Ally | M. Balasundaram | Noreen Dhalla | Michael Mayo | R. Akbani | J. Gastier-Foster | T. Lichtenberg | L. Wise | John A. Demchok | Margi Sheth | H. Sofia | Liming Yang | S. Schumacher | W. Rathmell | A. Cherniack | Payal Sipahimalani | R. Carlsen | J. Auman | Donghui Tan | Corbin D. Jones | S. Jefferys | T. Bodenheimer | A. Hoyle | J. Simons | Phillip H. Lai | M. Bootwalla | Hailei Zhang | N. Gehlenborg | S. Frazer | Yiling Lu | R. Shen | C. Shelton | J. Gardner | D. Mallery | J. Paulauskis | Erin E. Curley | L. Thorne | L. Boice | T. Pihl | Zhining Wang | R. Tarnuzzer | J. Zhang | Jia Liu | E. Reznik | T. Hinoue | S. Meng | T. Skelly | A. Zhu | F. Farshidfar | R. Bowlby | C. Pedamallu | A. I. Ojesina | Ina Felau | C. Hutter | J. Zenklusen | Sudha Chudamani | Laxmi Lolla | R. Naresh | Yunhu Wan | Ye Wu | T. DeFreitas | S. Meier | A. Hegde | Denise Brooks | K. Kasaian | Yussanne Ma | S. Sadeghi | Tina Wong | C. Cibulskis | J. Shih | D. J. Van Den Berg | Amy H. Perou | J. Roach | Matthew G. Soloway | Umadevi Veluvolu | K. Covington | E. Shinbrot | Liu Xi | J. Hess | M. Cordes | D. Crain | M. Gerken | N. Ramirez | E. Zmuda | A. D. De Rose | F. Giuliante | K. Evason | M. Borad | V. Chandan | N. Giama | C. Moser | L. Roberts | M. Torbenson | Ju Dong Yang | G. Genovese | L. Kwong | N. Bardeesy | D. Kleiner | Siyuan Zheng | V. Deshpande | M. Gingras | Arshi Arora | Bradley A. Murray | Amie Radenbaugh | O. Bathe | Andrea E Holbrook | Mario Berrios | E. Gibb | S. Rhie | A. Franchitto | G. Carpino | E. Gaudio | H. Stoppler | Yulia Newton | J. Roszik | G. Grazi | D. Alvaro | M. Bragazzi | V. Cardinale | Chia-Chin Wu | J. Andersen | T. Mounajjed | Yan Shi | T. Patel | R. Chaiteerakij | Gina Choe | André L. Carvalho | R. Shroff | Qiang Sun | A. McRee | Elizabeth L. Appelbaum | Loretta K. Allotey | W. Foo | M. Matsushita | E. Chuah | K. Leraas | Josh M Stuart | Li Ding | Daniel R. O’Brien | Qiang Sun | R. Kelley | Mike S. Lawrence | S. Gabriel | Mei Huang | Jay Bowen | R. Penny | Richard A. Gibbs | J. Yang | J. D. Yang | Christopher A. Miller | N. Stransky | Robert S. Fulton | Wenbin Liu | R. Wilson | C. A. Miller | R. Shen | J. Parker | A. G. Robertson | Tara J. Skelly

[1]  Gad Getz,et al.  Polyclonal Secondary FGFR2 Mutations Drive Acquired Resistance to FGFR Inhibition in Patients with FGFR2 Fusion-Positive Cholangiocarcinoma. , 2017, Cancer discovery.

[2]  Andrew X. Zhu,et al.  Forty-Year Trends in Cholangiocarcinoma Incidence in the U.S.: Intrahepatic Disease on the Rise , 2016, The oncologist.

[3]  Eve Shinbrot,et al.  Mutation signatures reveal biological processes in human cancer , 2016, bioRxiv.

[4]  M. Fassan,et al.  Cholangiocarcinoma Heterogeneity Revealed by Multigene Mutational Profiling: Clinical and Prognostic Relevance in Surgically Resected Patients , 2016, Annals of Surgical Oncology.

[5]  A. Iafrate,et al.  Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion. , 2015, Cancer Cell.

[6]  E. Maher,et al.  Abstract PL04-05: The first reported results of AG-120, a first-in-class, potent inhibitor of the IDH1 mutant protein, in a Phase I study of patients with advanced IDH1-mutant solid tumors, including gliomas , 2015 .

[7]  Thomas P. Howard,et al.  SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2 , 2015, Nature Medicine.

[8]  S. Thorgeirsson,et al.  Functional and genetic deconstruction of the cellular origin in liver cancer , 2015, Nature Reviews Cancer.

[9]  T. Graeber,et al.  2-Hydroxyglutarate Inhibits ATP Synthase and mTOR Signaling. , 2015, Cell metabolism.

[10]  S. Armstrong,et al.  Loss of BAP1 function leads to EZH2-dependent transformation , 2015, Nature Medicine.

[11]  Hiromi Nakamura,et al.  Genomic spectra of biliary tract cancer , 2015, Nature Genetics.

[12]  Christian M. Metallo,et al.  Metabolic consequences of oncogenic IDH mutations. , 2015, Pharmacology & therapeutics.

[13]  N. Bardeesy,et al.  Biliary Tract Cancers: Finding Better Ways to Lump and Split. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[14]  V. Deshpande,et al.  Difficult Diagnostic Problems in Pancreatobiliary Neoplasia. , 2015, Archives of pathology & laboratory medicine.

[15]  Martin L. Miller,et al.  Mitochondrial DNA copy number variation across human cancers , 2015, bioRxiv.

[16]  Steven J. M. Jones,et al.  Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. , 2015, The New England journal of medicine.

[17]  E. Cuyás,et al.  Oncometabolic mutation IDH1 R132H confers a metformin-hypersensitive phenotype , 2015, Oncotarget.

[18]  Jessica Zucman-Rossi,et al.  Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets , 2015, Nature Genetics.

[19]  E. Schadt,et al.  Massive parallel sequencing uncovers actionable FGFR2–PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma , 2015, Nature Communications.

[20]  G. Mills,et al.  Mutation Profiling in Cholangiocarcinoma: Prognostic and Therapeutic Implications , 2014, PloS one.

[21]  Nansheng Chen,et al.  Mutational landscape of intrahepatic cholangiocarcinoma , 2014, Nature Communications.

[22]  Lawrence A. Donehower,et al.  The somatic genomic landscape of chromophobe renal cell carcinoma. , 2014, Cancer cell.

[23]  K. Ross,et al.  Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer , 2014, Nature.

[24]  Benjamin J. Raphael,et al.  Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin , 2014, Cell.

[25]  Y. Jeng,et al.  Morphological subclassification of intrahepatic cholangiocarcinoma: etiological, clinicopathological, and molecular features , 2014, Modern Pathology.

[26]  Christian M. Metallo,et al.  IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. , 2014, Cancer research.

[27]  Y. Totoki,et al.  Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma , 2014, Hepatology.

[28]  David M. Jones,et al.  New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. , 2014, The oncologist.

[29]  Eric W. Klee,et al.  Integrated Genomic Characterization Reveals Novel, Therapeutically Relevant Drug Targets in FGFR and EGFR Pathways in Sporadic Intrahepatic Cholangiocarcinoma , 2014, PLoS genetics.

[30]  Swe Swe Myint,et al.  Exome sequencing identifies distinct mutational patterns in liver fluke–related and non-infection-related bile duct cancers , 2013, Nature Genetics.

[31]  T. Pawlik,et al.  Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas , 2013, Nature Genetics.

[32]  S. Thorgeirsson,et al.  Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. , 2013, Gastroenterology.

[33]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[34]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[35]  Bárbara Martínez-Pastor,et al.  A tale of metabolites: the cross-talk between chromatin and energy metabolism. , 2013, Cancer discovery.

[36]  W. Kaelin,et al.  What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. , 2013, Genes & development.

[37]  Derek Y. Chiang,et al.  Mutations in Isocitrate Dehydrogenase 1 and 2 Occur Frequently in Intrahepatic Cholangiocarcinomas and Share Hypermethylation Targets with Glioblastomas , 2012, Oncogene.

[38]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[39]  Hyun Goo Woo,et al.  Transcriptomic profiling reveals hepatic stem‐like gene signatures and interplay of miR‐200c and epithelial‐mesenchymal transition in intrahepatic cholangiocarcinoma , 2012, Hepatology.

[40]  Masakazu Yamamoto,et al.  Intrahepatic Cholangiocarcinoma With Predominant “Ductal Plate Malformation” Pattern: A New Subtype , 2012, The American journal of surgical pathology.

[41]  Sayaka Sekiya,et al.  Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. , 2012, The Journal of clinical investigation.

[42]  Jesse S. Voss,et al.  Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. , 2012, Human pathology.

[43]  G. Gores,et al.  Cholangiocarcinomas can originate from hepatocytes in mice. , 2012, The Journal of clinical investigation.

[44]  W. Palmer,et al.  Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. , 2012, Journal of hepatology.

[45]  Young Bae Kim,et al.  A fibrous stromal component in hepatocellular carcinoma reveals a cholangiocarcinoma‐like gene expression trait and epithelial‐mesenchymal transition , 2012, Hepatology.

[46]  Bin Tean Teh,et al.  Exome sequencing of liver fluke–associated cholangiocarcinoma , 2012, Nature Genetics.

[47]  Itzhak Avital,et al.  Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. , 2012, Gastroenterology.

[48]  C. Rock,et al.  Cancer-associated Isocitrate Dehydrogenase Mutations Inactivate NADPH-dependent Reductive Carboxylation* , 2012, The Journal of Biological Chemistry.

[49]  Jeffrey W. Clark,et al.  Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. , 2012, The oncologist.

[50]  Bin Wang,et al.  Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. , 2011, Cancer cell.

[51]  R. Jove,et al.  miR‐194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice , 2010, Hepatology.

[52]  Jung-Hwan Yoon,et al.  Identification of a cholangiocarcinoma-like gene expression trait in hepatocellular carcinoma. , 2010, Cancer research.

[53]  D. Cunningham,et al.  Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. , 2010, The New England journal of medicine.

[54]  R. Reznek,et al.  Cancer of unknown primary site. , 2008, Clinical medicine.