Modeling Springback in Stamped Automotive Structures

[1]  Marc Louis Maurice Franccois A plasticity model with yield surface distortion for non proportional loading , 2010 .

[2]  R. D. Krieg A Practical Two Surface Plasticity Theory , 1975 .

[3]  Han-Chin Wu,et al.  Continuum mechanics and plasticity , 2004 .

[4]  R. H. Wagoner,et al.  DIE DESIGN METHOD FOR SHEET SPRINGBACK , 2004 .

[5]  Sylvain Calloch,et al.  An Improvement of Multiaxial Ratchetting Modeling Via Yield Surface Distortion , 2002 .

[6]  N. Ohno,et al.  Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basic features for ratchetting behavior , 1993 .

[7]  Daniel E. Green Description of Numisheet 2005 Benchmark ♯3 Stage‐1: Channel Draw with 75% drawbead penetration , 2005 .

[8]  A. J. Baptista,et al.  Influence of Drawbeads in Deep-Drawing of Plane-Strain Channel Sections: Experimental and FE Analysis , 2007 .

[9]  S. Solla,et al.  Consistent and Minimal Springback Using a Stepped Binder Force Trajectory and Neural Network Control , 2000 .

[10]  Fusahito Yoshida,et al.  A Model of Large-Strain Cyclic Plasticity and its Application to Springback Simulation , 2002 .

[11]  R. H. Wagoner,et al.  Simulation of springback with the draw/bend test , 1999, Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296).

[12]  Akhtar S. Khan,et al.  An experimental study on subsequent yield surface after finite shear prestraining , 1993 .

[13]  William F. Hosford,et al.  Upper-bound anisotropic yield locus calculations assuming 〈111〉-pencil glide , 1980 .

[14]  Mei Zhan,et al.  A Numerical-analytic Method for Quickly Predicting Springback of Numerical Control Bending of Thin-walled Tube , 2006 .

[15]  R. Hill Theoretical plasticity of textured aggregates , 1979, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  N. Ohno,et al.  A Constitutive Model of Cyclic Plasticity for Nonlinear Hardening Materials , 1986 .

[17]  Yannis F. Dafalias,et al.  Plastic Internal Variables Formalism of Cyclic Plasticity , 1976 .

[18]  Fusahito Yoshida,et al.  A constitutive model of cyclic plasticity , 2000 .

[19]  Akhtar S. Khan,et al.  Continuum theory of plasticity , 1995 .

[20]  Huseyin Sehitoglu,et al.  Modeling of cyclic ratchetting plasticity, part i: Development of constitutive relations , 1996 .

[21]  S. Karashima,et al.  Deformation behaviour and dislocation structures upon stress reversal in polycrystalline aluminium , 1975 .

[22]  Amit K. Ghosh,et al.  Elastic and Inelastic Recovery After Plastic Deformation of DQSK Steel Sheet , 2003 .

[23]  K. Bathe,et al.  Inelastic Analysis of Solids and Structures , 2004 .

[24]  A. P. Karafillis,et al.  Accommodation of Springback Error in Channel Forming Using Active Binder Force Control: Numerical Simulations and Experiments , 1996 .

[25]  R. H. Wagoner,et al.  Simulation of springback , 2002 .

[26]  Sandrine Thuillier,et al.  Comparison of the work-hardening of metallic sheets using tensile and shear strain paths , 2009 .

[27]  Zhong-qin Lin,et al.  Eliminating springback error in U-shaped part forming by variable blankholder force , 2002 .

[28]  W. Prager,et al.  A NEW METHOD OF ANALYZING STRESSES AND STRAINS IN WORK - HARDENING PLASTIC SOLIDS , 1956 .

[29]  Vassili Toropov,et al.  Multiparameter structural optimization using FEM and multipoint explicit approximations , 1993 .

[30]  David L. McDowell,et al.  Stress state dependence of cyclic ratchetting behavior of two rail steels , 1995 .

[31]  R. H. Wagoner,et al.  Springback Analysis with a Modified Hardening Model , 2000 .

[32]  Dong-Yol Yang,et al.  Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar anisotropic sheet materials , 1999 .

[33]  C. O. Frederick,et al.  A mathematical representation of the multiaxial Bauschinger effect , 2007 .

[34]  A. Suprun A constitutive model with three plastic constants: The description of anisotropic workhardening , 2006 .

[35]  Robert A. Ayres,et al.  SHAPESET: A process to reduce sidewall curl springback in high-strength steel rails , 1984 .

[36]  R. H. Wagoner,et al.  Simulation of springback: Through-thickness integration , 2007 .

[37]  J. Chaboche Time-independent constitutive theories for cyclic plasticity , 1986 .

[38]  S. R. MacEwen,et al.  Effect of stress reversals on the work hardening behaviour of polycrystalline copper , 1986 .

[39]  J. K. Lee,et al.  Modeling the Bauschinger effect for sheet metals, part I: theory , 2002 .

[40]  N. Ohno,et al.  Detailed and Simplified Elastoplastic Analyses of a Cyclically Loaded Notched Bar , 1987 .

[41]  A. Ghosh,et al.  Inelastic effects on springback in metals , 2002 .

[42]  R. E. Dick,et al.  Plane stress yield function for aluminum alloy sheets—part II: FE formulation and its implementation , 2004 .

[43]  V. Toropov,et al.  IDENTIFICATION OF MATERIAL PARAMETERS IN CONSTITUTIVE MODEL FOR SHEET METALS FROM CYCLIC BENDING TESTS , 1996 .

[44]  Xueyu Ruan,et al.  An analytical model for predicting springback and side wall curl of sheet after U-bending , 2007 .

[45]  J. K. Lee,et al.  Modeling the Bauschinger effect for sheet metals, part II: applications , 2002 .

[46]  W. Yeh,et al.  On the experimental determination of yield surfaces and some results of annealed 304 stainless steel , 1991 .

[47]  D. McDowell A Two Surface Model for Transient Nonproportional Cyclic Plasticity, Part 2: Comparison of Theory With Experiments , 1985 .

[48]  R. H. Wagoner,et al.  A multiplicative finite elasto-plastic formulation with anisotropic yield functions , 2003 .

[49]  P. Hartley Introduction to Computational Plasticity , 2006 .

[50]  R. H. Wagoner,et al.  Experimental Analysis of Blank Holding Force Control in Sheet Forming , 1993 .

[51]  C J Van Tyne,et al.  Analytical prediction of springback based on residual differential strain during sheet metal bending , 2008 .

[52]  Dong-Yol Yang,et al.  An assessment of numerical parameters influencing springback in explicit finite element analysis of sheet metal forming process , 1998 .

[53]  C. S. White A two surface plasticity model with bounding surface softening , 1996 .

[54]  Hans-Werner Ziegler A Modification of Prager's Hardening Rule , 1959 .

[55]  Aris Phillips,et al.  The effect of loading path on the yield surface at elevated temperatures , 1972 .

[56]  Young Hoon Moon,et al.  The Effective Unloading Modulus for Automotive Sheet Steels , 2006 .

[57]  Emin Bayraktar,et al.  Square cup deep drawing and 2D-draw bending analysis of Hadfield steel , 1996 .

[58]  R. H. Wagoner,et al.  Role of plastic anisotropy and its evolution on springback , 2002 .

[59]  Michael R. Lovell,et al.  Predicting springback in sheet metal forming: an explicit to implicit sequential solution procedure , 1999 .

[60]  Mary C. Boyce,et al.  Tooling and binder design for sheet metal forming processes compensating springback error , 1996 .

[61]  Frédéric Barlat,et al.  Continuous, large strain, tension/compression testing of sheet material , 2005 .

[62]  Kwansoo Chung,et al.  A practical two-surface plasticity model and its application to spring-back prediction , 2007 .

[63]  Fusahito Yoshida,et al.  Elastic-plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain , 2002 .

[64]  Kwansoo Chung,et al.  Spring-back evaluation of automotive sheets based on isotropic–kinematic hardening laws and non-quadratic anisotropic yield functions, part III: applications , 2005 .

[65]  Fusahito Yoshida,et al.  A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation , 2002 .

[66]  Thaweepat Buranathiti,et al.  An effective analytical model for springback prediction in straight flanging processes , 2004 .

[67]  W. Hosford A Generalized Isotropic Yield Criterion , 1972 .

[68]  Jean-Philippe Ponthot,et al.  Springback simulation in sheet metal forming using implicit algorithms , 1999 .

[69]  Ming Yang,et al.  Evaluation of change in material properties due to plastic deformation , 2004 .

[70]  F. Barlat,et al.  Plane stress yield function for aluminum alloy sheets—part 1: theory , 2003 .

[71]  R. Hill The mathematical theory of plasticity , 1950 .

[72]  Sylvain Calloch,et al.  A general cyclic plasticity model taking into account yield surface distortion for multiaxial ratchetting , 2004 .

[73]  J. C. Simo,et al.  A return mapping algorithm for plane stress elastoplasticity , 1986 .

[74]  Fabrice Morestin,et al.  On the necessity of taking into account the variation in the Young modulus with plastic strain in elastic-plastic software , 1996 .

[75]  José María Manero,et al.  Change of Young’s modulus of cold-deformed pure iron in a tensile test , 2005 .

[76]  Chung-Souk Han,et al.  Modeling multi-axial deformation of planar anisotropic elasto-plastic materials, part I: Theory , 2006 .

[77]  Frédéric Barlat,et al.  Plastic flow for non-monotonic loading conditions of an aluminum alloy sheet sample , 2003 .

[78]  Mary C. Boyce,et al.  Tooling design in sheet metal forming using springback calculations , 1992 .

[79]  R. H. Wagoner,et al.  Analytical springback model for lightweight hexagonal close-packed sheet metal , 2009 .

[80]  Koji Iwata A two-surface cyclic plasticity model consistent with fundamental stress-strain equations of the power-law type , 1993 .

[81]  Chung-Souk Han,et al.  Modeling multi-axial deformation of planar anisotropic elasto-plastic materials, part II: Applications , 2006 .

[82]  E. F. Rauch,et al.  Plastic anisotropy of sheet metals determined by simple shear tests , 1998 .

[83]  Kwansoo Chung,et al.  Semi-Analytic Hybrid Method to Predict Springback in the 2D Draw Bend Test , 2007 .

[84]  Chinghua Hung,et al.  Finite element analysis and optimization on springback reduction , 1999 .