Hybrid I/O automata

Hybrid systems are systems that exhibit a combination of discrete and continuous behavior. Typical hybrid systems include computer components, which operate in discrete program steps, and real-world components, whose behavior over time intervals evolves according to physical constraints. Important examples of hybrid systems include automated transportation systems, robotics systems, process control systems, systems of embedded devices, and mobile computing systems. Such systems can be very complex, and very difficult to describe and analyze. This paper presents the Hybrid Input/Output Automaton (HIOA) modeling framework, a basic mathematical framework to support description and analysis of hybrid systems. An important feature of this model is its support for decomposing hybrid system descriptions. In particular, the framework includes a notion of external behavior for a hybrid I/O automaton, which captures its discrete and continuous interactions with its environment. The framework also defines what it means for one HIOA to implement another, based on an inclusion relationship between their external behavior sets, and defines a notion of simulation, which provides a sufficient condition for demonstrating implementation relationships. The framework also includes a composition operation for HIOAs, which respects the implementation relation and a notion of receptiveness, which implies that an HIOA does not block the passage of time. The framework is intended to support analysis methods from both computer science and control theory. This work is a simplification of our earlier HIOA model. The main simplification in the new model is a clearer separation between the mechanisms used to model discrete and continuous interaction between components. In particular, the new model removes the dual use of external variables for discrete and continuous interactions.

[1]  Thomas A. Henzinger,et al.  Assume-Guarantee Reasoning for Hierarchical Hybrid Systems , 2001, HSCC.

[2]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[3]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[4]  Kai Engelhardt,et al.  Data Refinement: Model-Oriented Proof Methods and their Comparison , 1998 .

[5]  Michael S. Branicky,et al.  Studies in hybrid systems: modeling, analysis, and control , 1996 .

[6]  Nancy A. Lynch A THREE-LEVEL ANALYSIS OF A SIMPLE ACCELERATION MANEUVER, WITH UNCERTAINTIES , 1996 .

[7]  Martín Abadi,et al.  Composing Specifications , 1989, REX Workshop.

[8]  Cliff B. Jones,et al.  Developing methods for computer programs including a notion of interference , 1981 .

[9]  Matthew Hennessy,et al.  Algebraic theory of processes , 1988, MIT Press series in the foundations of computing.

[10]  Nancy A. Lynch,et al.  Liveness in Timed and Untimed Systems , 1994, Inf. Comput..

[11]  Nancy A. Lynch,et al.  Hybrid I/O automata , 1995, Inf. Comput..

[12]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[13]  Thomas A. Henzinger,et al.  Reactive Modules , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[14]  Rocco De Nicola,et al.  Action versus State based Logics for Transition Systems , 1990, Semantics of Systems of Concurrent Processes.

[15]  Mark A. Smith Reliable message delivery and conditionally-fast transactions are not possible without accurate clocks , 1998, PODC '98.

[16]  Michael Merritt,et al.  Time-Constrained Automata (Extended Abstract) , 1991, CONCUR.

[17]  Nancy A. Lynch,et al.  Computer-Assisted Simulation Proofs , 1993, CAV.

[18]  Michael S. Branicky,et al.  Analyzing and Synthesizing Hybrid Control Systems , 1996, European Educational Forum: School on Embedded Systems.

[19]  Nancy A. Lynch,et al.  High-level modeling and analysis of TCAS , 1999, Proceedings 20th IEEE Real-Time Systems Symposium (Cat. No.99CB37054).

[20]  Nancy A. Lynch,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[21]  A. Nerode,et al.  Concurrent Programs as Strategies in Games , 1992 .

[22]  Jan C. Willems,et al.  Models for Dynamics , 1989 .

[23]  Insup Lee,et al.  Compositional Refinement for Hierarchical Hybrid Systems , 2001, HSCC.

[24]  Nancy A. Lynch,et al.  Hybrid I/O Automata Revisited , 2001, HSCC.

[25]  Rajeev Alur,et al.  Timed Automata , 1999, CAV.

[26]  Robert W. Floyd,et al.  Assigning Meanings to Programs , 1993 .

[27]  Nancy A. Lynch,et al.  Forward and Backward Simulations, II: Timing-Based Systems , 1991, Inf. Comput..

[28]  Thomas A. Henzinger,et al.  Prooving Safety Properties of Hybrid Systems , 1994, FTRTFT.

[29]  Nancy A. Lynch Modelling and Verification of Automated Transit Systems, Using Timed Automata, Invariants and Simulations , 1995, Hybrid Systems.

[30]  Nancy A. Lynch,et al.  An introduction to input/output automata , 1989 .

[31]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[32]  Nancy A. Lynch,et al.  Verification of Automated Vehicle Protection Systems , 1995, Hybrid Systems.

[33]  Leslie Lamport,et al.  The temporal logic of actions , 1994, TOPL.

[34]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[35]  M. A. S. Smith Formal Verification of Communication Protocols , 1996, FORTE.

[36]  Leslie Lamport,et al.  What Good is Temporal Logic? , 1983, IFIP Congress.

[37]  Nancy A. Lynch,et al.  Specifying and using a partitionable group communication service , 2001, TOCS.

[38]  Amir Pnueli,et al.  Development of Hybrid Systems , 1994, FTRTFT.

[39]  Nancy A. Lynch,et al.  Revisiting the PAXOS algorithm , 1997, Theor. Comput. Sci..

[40]  Frits W. Vaandrager,et al.  A Note on Fairness in I/O Automata , 1996, Inf. Process. Lett..

[41]  Thomas A. Henzinger,et al.  Modularity for Timed and Hybrid Systems , 1997, CONCUR.

[42]  Nancy A. Lynch,et al.  Forward and Backward Simulations, II: Timing-Based Systems , 1996, Inf. Comput..

[43]  Nancy A. Lynch,et al.  Action transducers and timed automata , 1992, Formal Aspects of Computing.

[44]  Jan C. Willems,et al.  Introduction to mathematical systems theory: a behavioral approach, Texts in Applied Mathematics 26 , 1999 .

[45]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[46]  Zohar Manna,et al.  From Timed to Hybrid Systems , 1991, REX Workshop.

[47]  Zohar Manna,et al.  Verification of Clocked and Hybrid Systems , 1996, European Educational Forum: School on Embedded Systems.

[48]  Nancy A. Lynch,et al.  Hierarchical correctness proofs for distributed algorithms , 1987, PODC '87.

[49]  Nancy A. Lynch,et al.  Safety Verification of Model Helicopter Controller Using Hybrid Input/Output Automata , 2003, HSCC.

[50]  Nancy A. Lynch,et al.  Correctness of vehicle control systems-a case study , 1996, 17th IEEE Real-Time Systems Symposium.

[51]  Nancy A. Lynch,et al.  On the formal verification of the TCAS conflict resolution algorithms , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[52]  Nancy A. Lynch,et al.  The generalized railroad crossing: a case study in formal verification of real-time systems , 1994, 1994 Proceedings Real-Time Systems Symposium.

[53]  Nancy A. Lynch,et al.  Strings of Vehicles: Modeling and Safety Conditions , 1998, HSCC.

[54]  Carl A. Gunter Semantics of programming languages: structures and techniques , 1993, Choice Reviews Online.

[55]  Nancy A. Lynch,et al.  Verifying timing properties of concurrent algorithms , 1994, FORTE.

[56]  David L. Dill,et al.  Trace theory for automatic hierarchical verification of speed-independent circuits , 1989, ACM distinguished dissertations.

[57]  Nancy A. Lynch,et al.  Formal Verification of Safety-Critical Hybrid Systems , 1998, HSCC.

[58]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[59]  Ansgar Fehnker,et al.  Automotive Control Revisited: Linear Inequalities as Approximation of Reachable Sets , 1998, HSCC.

[60]  Nancy A. Lynch,et al.  A Toolbox for Proving and MaintainingHybrid Speci cationsMichael , 1997 .

[61]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[62]  Nancy Lynch,et al.  Safety Verification for Automated Platoon Maneuvers: A Case Study , 1997, HART.

[63]  Nancy A. Lynch,et al.  Forward and Backward Simulations: I. Untimed Systems , 1995, Inf. Comput..

[64]  Thomas A. Henzinger,et al.  Hybrid Systems III , 1995, Lecture Notes in Computer Science.

[65]  J. Huisman The Netherlands , 1996, The Lancet.

[66]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[67]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic systems , 1990 .