Numerical experiments on the efficiency of local grid refinement based on truncation error estimates
暂无分享,去创建一个
John G. Bartzis | Alexandros Syrakos | Apostolos Goulas | George Efthimiou | J. Bartzis | A. Goulas | A. Syrakos | G. Efthimiou
[1] S. G. Rubin,et al. A diagonally dominant second-order accurate implicit scheme , 1974 .
[2] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[3] C. Bruneau,et al. The 2D lid-driven cavity problem revisited , 2006 .
[4] A. D. Gosman,et al. RESIDUAL ERROR ESTIMATE FOR THE FINITE-VOLUME METHOD , 2001 .
[5] Aimé Fournier,et al. Geophysical-astrophysical spectral-element adaptive refinement (GASpAR): Object-oriented h-adaptive fluid dynamics simulation , 2006, J. Comput. Phys..
[6] Boris Diskin,et al. Towards Verification of Unstructured-Grid Solvers , 2008 .
[7] Klaus Bernert,et al. τ-Extrapolation - Theoretical Foundation, Numerical Experiment, and Application to Navier-Stokes Equations , 1997, SIAM J. Sci. Comput..
[8] Boris Diskin,et al. No . 2007-08 Accuracy Analysis for Mixed-Element Finite-Volume Discretization Schemes , 2007 .
[9] Chaopeng Shen,et al. Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations , 2011, J. Comput. Phys..
[10] Thomas A. Manteuffel,et al. The numerical solution of second-order boundary value problems on nonuniform meshes , 1986 .
[11] Nail K. Yamaleev. Minimization of the truncation error by grid adaptation , 1999 .
[12] Andrew J. Sinclair,et al. On the generation of exact solutions for evaluating numerical schemes and estimating discretization error , 2009, J. Comput. Phys..
[13] C. Rhie,et al. Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .
[14] Narayanaswamy Balakrishnan,et al. R-parameter: A local truncation error based adaptive framework for finite volume compressible flow solvers , 2009 .
[15] Eusebio Valero,et al. The estimation of truncation error by τ-estimation revisited , 2012, J. Comput. Phys..
[16] Nami Matsunaga,et al. Superconvergence of the Shortley-Weller approximation for Dirichlet problems , 2000 .
[17] Michel Visonneau,et al. Adaptive finite-volume solution of complex turbulent flows , 2007 .
[18] Harry R. Lewis,et al. Data Structures and Their Algorithms , 1991 .
[19] Harry R. Lewis,et al. Data structures & their algorithms , 1991 .
[20] M. Visonneau,et al. Error estimation using the error transport equation for finite-volume methods and arbitrary meshes , 2006 .
[21] Frans Pretorius,et al. Adaptive mesh refinement for coupled elliptic-hyperbolic systems , 2006, J. Comput. Phys..
[22] P. Colella,et al. A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains , 1998 .
[23] J. Ferziger,et al. An adaptive multigrid technique for the incompressible Navier-Stokes equations , 1989 .
[24] L. Trefethen,et al. Numerical linear algebra , 1997 .
[25] Jie Shen. Dynamics of regularized cavity flow at high Reynolds numbers , 1989 .
[26] Lisa L. Lowe,et al. Multigrid elliptic equation solver with adaptive mesh refinement , 2005 .
[27] S. Muzaferija,et al. Finite-Volume CFD Procedure and Adaptive Error Control Strategy for Grids of Arbitrary Topology , 1997 .
[28] Jan Nordström,et al. Analysis of the order of accuracy for node-centered finite volume schemes , 2009 .
[29] O. Botella,et al. BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .
[30] A. D. Gosman,et al. Automatic Resolution Control for the Finite-Volume Method, Part 2: Adaptive Mesh Refinement and Coarsening , 2000 .
[31] D. Spalding,et al. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .
[32] A. D. Gosman,et al. Element residual error estimate for the finite volume method , 2003 .
[33] S. Fulton. ON THE ACCURACY OF MULTIGRID TRUNCATION ERROR ESTIMATES ON STAGGERED GRIDS , 2009 .
[34] D. Hänel,et al. Adaptive methods on unstructured grids for Euler and Navier-Stokes equations , 1993 .
[35] Magnus Svärd,et al. On the order of accuracy for difference approximations of initial-boundary value problems , 2006, J. Comput. Phys..
[36] Michael J. Aftosmis,et al. Multilevel Error Estimation and Adaptive h-Refinement for Cartesian Meshes with Embedded Boundaries , 2002 .
[37] S. McCormick,et al. A multigrid tutorial (2nd ed.) , 2000 .
[38] William L. Briggs,et al. A multigrid tutorial, Second Edition , 2000 .
[39] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[40] W. P. Jones,et al. Analysis of the cell-centred finite volume method for the diffusion equation , 2000 .
[41] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[42] Jie Shen,et al. Hopf bifurcation of the unsteady regularized driven cavity flow , 1991 .
[43] M. Berger,et al. Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .
[44] Y. C. Lee,et al. An efficient adaptive multigrid algorithm for predicting thin film flow on surfaces containing localised topographic features , 2007 .
[45] Boris Diskin,et al. Towards Verification of Unstructured-Grid Solvers , 2008 .
[46] Fue-Sang Lien,et al. Local mesh refinement within a multi-block structured-grid scheme for general flows , 1997 .