Numerical experiments on the efficiency of local grid refinement based on truncation error estimates

Local grid refinement aims to optimise the relationship between accuracy of the results and number of grid nodes. In the context of the finite volume method no single local refinement criterion has been globally established as optimum for the selection of the control volumes to subdivide, since it is not easy to associate the discretisation error with an easily computable quantity in each control volume. Often the grid refinement criterion is based on an estimate of the truncation error in each control volume, because the truncation error is a natural measure of the discrepancy between the algebraic finite-volume equations and the original differential equations. However, it is not a straightforward task to associate the truncation error with the optimum grid density because of the complexity of the relationship between truncation and discretisation errors. In the present work several criteria based on a truncation error estimate are tested and compared on a regularised lid-driven cavity case at various Reynolds numbers. It is shown that criteria where the truncation error is weighted by the volume of the grid cells perform better than using just the truncation error as the criterion. Also it is observed that the efficiency of local refinement increases with the Reynolds number. The truncation error is estimated by restricting the solution to a coarser grid and applying the coarse grid discrete operator. The complication that high truncation error develops at grid level interfaces is also investigated and several treatments are tested.

[1]  S. G. Rubin,et al.  A diagonally dominant second-order accurate implicit scheme , 1974 .

[2]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[3]  C. Bruneau,et al.  The 2D lid-driven cavity problem revisited , 2006 .

[4]  A. D. Gosman,et al.  RESIDUAL ERROR ESTIMATE FOR THE FINITE-VOLUME METHOD , 2001 .

[5]  Aimé Fournier,et al.  Geophysical-astrophysical spectral-element adaptive refinement (GASpAR): Object-oriented h-adaptive fluid dynamics simulation , 2006, J. Comput. Phys..

[6]  Boris Diskin,et al.  Towards Verification of Unstructured-Grid Solvers , 2008 .

[7]  Klaus Bernert,et al.  τ-Extrapolation - Theoretical Foundation, Numerical Experiment, and Application to Navier-Stokes Equations , 1997, SIAM J. Sci. Comput..

[8]  Boris Diskin,et al.  No . 2007-08 Accuracy Analysis for Mixed-Element Finite-Volume Discretization Schemes , 2007 .

[9]  Chaopeng Shen,et al.  Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations , 2011, J. Comput. Phys..

[10]  Thomas A. Manteuffel,et al.  The numerical solution of second-order boundary value problems on nonuniform meshes , 1986 .

[11]  Nail K. Yamaleev Minimization of the truncation error by grid adaptation , 1999 .

[12]  Andrew J. Sinclair,et al.  On the generation of exact solutions for evaluating numerical schemes and estimating discretization error , 2009, J. Comput. Phys..

[13]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[14]  Narayanaswamy Balakrishnan,et al.  R-parameter: A local truncation error based adaptive framework for finite volume compressible flow solvers , 2009 .

[15]  Eusebio Valero,et al.  The estimation of truncation error by τ-estimation revisited , 2012, J. Comput. Phys..

[16]  Nami Matsunaga,et al.  Superconvergence of the Shortley-Weller approximation for Dirichlet problems , 2000 .

[17]  Michel Visonneau,et al.  Adaptive finite-volume solution of complex turbulent flows , 2007 .

[18]  Harry R. Lewis,et al.  Data Structures and Their Algorithms , 1991 .

[19]  Harry R. Lewis,et al.  Data structures & their algorithms , 1991 .

[20]  M. Visonneau,et al.  Error estimation using the error transport equation for finite-volume methods and arbitrary meshes , 2006 .

[21]  Frans Pretorius,et al.  Adaptive mesh refinement for coupled elliptic-hyperbolic systems , 2006, J. Comput. Phys..

[22]  P. Colella,et al.  A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains , 1998 .

[23]  J. Ferziger,et al.  An adaptive multigrid technique for the incompressible Navier-Stokes equations , 1989 .

[24]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[25]  Jie Shen Dynamics of regularized cavity flow at high Reynolds numbers , 1989 .

[26]  Lisa L. Lowe,et al.  Multigrid elliptic equation solver with adaptive mesh refinement , 2005 .

[27]  S. Muzaferija,et al.  Finite-Volume CFD Procedure and Adaptive Error Control Strategy for Grids of Arbitrary Topology , 1997 .

[28]  Jan Nordström,et al.  Analysis of the order of accuracy for node-centered finite volume schemes , 2009 .

[29]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[30]  A. D. Gosman,et al.  Automatic Resolution Control for the Finite-Volume Method, Part 2: Adaptive Mesh Refinement and Coarsening , 2000 .

[31]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[32]  A. D. Gosman,et al.  Element residual error estimate for the finite volume method , 2003 .

[33]  S. Fulton ON THE ACCURACY OF MULTIGRID TRUNCATION ERROR ESTIMATES ON STAGGERED GRIDS , 2009 .

[34]  D. Hänel,et al.  Adaptive methods on unstructured grids for Euler and Navier-Stokes equations , 1993 .

[35]  Magnus Svärd,et al.  On the order of accuracy for difference approximations of initial-boundary value problems , 2006, J. Comput. Phys..

[36]  Michael J. Aftosmis,et al.  Multilevel Error Estimation and Adaptive h-Refinement for Cartesian Meshes with Embedded Boundaries , 2002 .

[37]  S. McCormick,et al.  A multigrid tutorial (2nd ed.) , 2000 .

[38]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[39]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[40]  W. P. Jones,et al.  Analysis of the cell-centred finite volume method for the diffusion equation , 2000 .

[41]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[42]  Jie Shen,et al.  Hopf bifurcation of the unsteady regularized driven cavity flow , 1991 .

[43]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[44]  Y. C. Lee,et al.  An efficient adaptive multigrid algorithm for predicting thin film flow on surfaces containing localised topographic features , 2007 .

[45]  Boris Diskin,et al.  Towards Verification of Unstructured-Grid Solvers , 2008 .

[46]  Fue-Sang Lien,et al.  Local mesh refinement within a multi-block structured-grid scheme for general flows , 1997 .