Hybrid Parallel Linear System Solvers

This paper presents a new approach to the solution of nonsymmetric linear systems that uses hybrid techniques based on both direct and iterative methods. An implicitly preconditioned modified system is obtained by applying projections onto block rows of the original system. Our technique provides the flexibility of using either direct or iterative methods for the solution of the preconditioned system. The resulting algorithms are robust, and can be implemented with high efficiency on a variety of parallel architectures. The algorithms are used to solve linear systems arising from the discretization of convection-diffusion equations as well as those systems that arise from the simulation of particulate flows. Experiments are presented to illustrate the robustness and parallel efficiency of these methods.