재진입 비행체의 TAEM 구간 최적궤적 설계와 인공신경망을 이용한 제어
暂无分享,去创建一个
This paper describes a result of the guidance and control for re-entry vehicle during TAEM phase. TAEM phase (Terminal Aerial Energy Management phase) has many conditions, such as density, velocity, and so on. Under these conditions, we have optimized trajectory and other states for guidance in TAEM phase. The optimized states consist of 7 variables, down-range, cross range, altitude, velocity, flight path angle, vehicle’s azimuth and flight range. We obtained the optimized reference trajectory by DIDO tool, and used feedback linearization with neural network for control re-entry vehicle. By back propagation algorithm, vehicle dynamics is approximated to real one. New command can be decided using the approximated dynamics, delayed command input and plant output, NARMA-L2. The result by this control law shows a good performance of tracking onto the reference trajectory.