Automated Inference of Chemical Discriminants of Biological Activity.

[1]  Nan Liu,et al.  Enabling the hypothesis-driven prioritization of ligand candidates in big databases: Screenlamp and its application to GPCR inhibitor discovery for invasive species control , 2018, bioRxiv.

[2]  Sebastian Raschka,et al.  BioPandas: Working with molecular structures in pandas DataFrames , 2017, J. Open Source Softw..

[3]  Qingliang Li,et al.  Structure-Based Virtual Screening. , 2017, Methods in molecular biology.

[4]  Xin Yan,et al.  Chemical Structure Similarity Search for Ligand-based Virtual Screening: Methods and Computational Resources. , 2016, Current drug targets.

[5]  Andreas Müller,et al.  Introduction to Machine Learning with Python: A Guide for Data Scientists , 2016 .

[6]  Sebastian Raschka,et al.  Python Machine Learning , 2015 .

[7]  N. Johnson,et al.  Investigations of Novel Unsaturated Bile Salts of Male Sea Lamprey as Potential Chemical Cues , 2014, Journal of Chemical Ecology.

[8]  Gilles Louppe,et al.  Understanding Random Forests: From Theory to Practice , 2014, 1407.7502.

[9]  L. Kuhn,et al.  Computational prediction and in vitro analysis of potential physiological ligands of the bile acid binding site in cytochrome c oxidase. , 2013, Biochemistry.

[10]  Anthony Nicholls,et al.  Conformer Generation with OMEGA: Learning from the Data Set and the Analysis of Failures , 2012, J. Chem. Inf. Model..

[11]  J. Bajorath,et al.  State-of-the-art in ligand-based virtual screening. , 2011, Drug discovery today.

[12]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[13]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[14]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[15]  Benjamin A. Ellingson,et al.  Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database , 2010, J. Chem. Inf. Model..

[16]  Hanna Geppert,et al.  Current Trends in Ligand-Based Virtual Screening: Molecular Representations, Data Mining Methods, New Application Areas, and Performance Evaluation , 2010, J. Chem. Inf. Model..

[17]  Jitender Verma,et al.  3D-QSAR in drug design--a review. , 2010, Current topics in medicinal chemistry.

[18]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[19]  Anjali Rohatgi,et al.  (www.interscience.wiley.com) DOI:10.1002/jmr.942 Scoring ligand similarity in structure-based virtual screening , 2022 .

[20]  G. Tutz,et al.  An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. , 2009, Psychological methods.

[21]  Michal L. Jones,et al.  A rapid assessment approach to prioritizing streams for control of Great Lakes sea lampreys (Petromyzon marinus): a case study in adaptive management , 2008 .

[22]  Achim Zeileis,et al.  Conditional variable importance for random forests , 2008, BMC Bioinformatics.

[23]  Violeta I. Pérez-Nueno,et al.  Comparison of Ligand-Based and Receptor-Based Virtual Screening of HIV Entry Inhibitors for the CXCR4 and CCR5 Receptors Using 3D Ligand Shape Matching and Ligand—Receptor Docking. , 2008 .

[24]  David W. Ritchie,et al.  Comparison of Ligand-Based and Receptor-Based Virtual Screening of HIV Entry Inhibitors for the CXCR4 and CCR5 Receptors Using 3D Ligand Shape Matching and Ligand-Receptor Docking , 2008, J. Chem. Inf. Model..

[25]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[26]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[27]  P. Hawkins,et al.  Comparison of shape-matching and docking as virtual screening tools. , 2007, Journal of medicinal chemistry.

[28]  Guido van Rossum,et al.  Python Programming Language , 2007, USENIX Annual Technical Conference.

[29]  P. Pudil,et al.  of Techniques for Large-Scale Feature Selection , 1994 .

[30]  J. An,et al.  Structure-based virtual screening of chemical libraries for drug discovery. , 2006, Current opinion in chemical biology.

[31]  Sai Chetan K. Sukuru,et al.  Discovering New Classes of Brugia malayi Asparaginyl-tRNA Synthetase Inhibitors and Relating Specificity to Conformational Change , 2006, J. Comput. Aided Mol. Des..

[32]  Brian K. Shoichet,et al.  ZINC - A Free Database of Commercially Available Compounds for Virtual Screening , 2005, J. Chem. Inf. Model..

[33]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[34]  Yoshua Bengio,et al.  No Unbiased Estimator of the Variance of K-Fold Cross-Validation , 2003, J. Mach. Learn. Res..

[35]  Paul D Lyne,et al.  Structure-based virtual screening: an overview. , 2002, Drug discovery today.

[36]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[37]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[38]  E. Fattorusso,et al.  Novel bioactive sulfated alkene and alkanes from the mediterranean ascidian Halocynthia papillosa. , 2000, Journal of natural products.

[39]  Anil K. Jain,et al.  Dimensionality reduction using genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[40]  W. Punch,et al.  Predicting conserved water-mediated and polar ligand interactions in proteins using a K-nearest-neighbors genetic algorithm. , 1997, Journal of molecular biology.

[41]  San Cristóbal Mateo,et al.  The Lack of A Priori Distinctions Between Learning Algorithms , 1996 .

[42]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[43]  Francesc J. Ferri,et al.  Comparative study of techniques for large-scale feature selection* *This work was suported by a SERC grant GR/E 97549. The first author was also supported by a FPI grant from the Spanish MEC, PF92 73546684 , 1994 .

[44]  I. T. Jolliffe,et al.  Springer series in statistics , 1986 .

[45]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[46]  Strother H. Walker,et al.  Estimation of the probability of an event as a function of several independent variables. , 1967, Biometrika.