Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks

[1]  M. Buehler,et al.  Mechanics of Nano-Honeycomb Silica Structures: Size-Dependent Brittle-to-Ductile Transition , 2011 .

[2]  M. Buehler,et al.  Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength , 2011 .

[3]  M. Buehler,et al.  ATOMISTICALLY-INFORMED MESOSCALE MODEL OF DEFORMATION AND FAILURE OF BIOINSPIRED HIERARCHICAL SILICA NANOCOMPOSITES , 2010 .

[4]  G. Schneider,et al.  On the mechanical properties of hierarchically structured biological materials. , 2010, Biomaterials.

[5]  M. Buehler,et al.  Atomistic study of crack-tip cleavage to dislocation emission transition in silicon single crystals. , 2010, Physical Review Letters.

[6]  Jianxiang Wang,et al.  Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs , 2010, Proceedings of the National Academy of Sciences.

[7]  M. Buehler,et al.  Bioinspired nanoporous silicon provides great toughness at great deformability , 2010 .

[8]  Zhiping Xu,et al.  Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Β-sheet Crystals in Silk , 2010 .

[9]  R. Ritchie,et al.  On the Mechanistic Origins of Toughness in Bone , 2010 .

[10]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[11]  J. Michler,et al.  Brittle‐to‐Ductile Transition in Uniaxial Compression of Silicon Pillars at Room Temperature , 2009 .

[12]  Paul K. Hansma,et al.  Plasticity and toughness in bone , 2009 .

[13]  C. Bulutay,et al.  Analysis of strain fields in silicon nanocrystals , 2009, 0905.3277.

[14]  Markus J. Buehler,et al.  ROBUSTNESS-STRENGTH PERFORMANCE OF HIERARCHICAL ALPHA-HELICAL PROTEIN FILAMENTS , 2009 .

[15]  Markus J Buehler,et al.  Alpha-helical protein domains unify strength and robustness through hierarchical nanostructures , 2009, Nanotechnology.

[16]  Alberto Carpinteri,et al.  Mechanics of hierarchical materials , 2008 .

[17]  Markus J. Buehler,et al.  Hierarchical Coexistence of Universality and Diversity Controls Robustness and Multi-Functionality in Protein Materials , 2008 .

[18]  C. Bulutay,et al.  Pathways of bond topology transitions at the interface of silicon nanocrystals and amorphous silica matrix , 2008, 0804.2322.

[19]  Huajian Gao,et al.  Multi-scale cohesive laws in hierarchical materials , 2007 .

[20]  N. Kröger Prescribing diatom morphology: toward genetic engineering of biological nanomaterials. , 2007, Current opinion in chemical biology.

[21]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[22]  Markus J Buehler,et al.  Threshold crack speed controls dynamical fracture of silicon single crystals. , 2007, Physical review letters.

[23]  Dusan Losic,et al.  Atomic force microscopy (AFM) characterisation of the porous silica nanostructure of two centric diatoms , 2007 .

[24]  Ted Belytschko,et al.  Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets , 2007 .

[25]  James C. Weaver,et al.  Micromechanical properties of biological silica in skeletons of deep-sea sponges , 2006 .

[26]  Huajian Gao,et al.  Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. , 2006 .

[27]  Huajian Gao,et al.  Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials , 2006 .

[28]  F. Yuan,et al.  Atomistic simulations of J-integral in 2D graphene nanosystems. , 2005, Journal of nanoscience and nanotechnology.

[29]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[30]  M. Swain,et al.  Fracture toughness from submicron derived indentation cracks , 2004 .

[31]  Alberto Carpinteri,et al.  Numerical analysis of indentation fracture in quasi-brittle materials , 2004 .

[32]  Z. Bažant,et al.  Scaling of structural strength , 2003 .

[33]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  A. V. Duin,et al.  ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems , 2003 .

[35]  Victor Smetacek,et al.  Architecture and material properties of diatom shells provide effective mechanical protection , 2003, Nature.

[36]  Christopher M. Care,et al.  A lattice spring model of heterogeneous materials with plasticity , 2001 .

[37]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[38]  R. Ballarini,et al.  Structural basis for the fracture toughness of the shell of the conch Strombus gigas , 2000, Nature.

[39]  O. Verborgt,et al.  Loss of Osteocyte Integrity in Association with Microdamage and Bone Remodeling After Fatigue In Vivo , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[40]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[41]  D. L. Wehmeyer Strength in numbers. , 1997, Texas medicine.

[42]  C. Viney,et al.  Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. , 1997, Biopolymers.

[43]  E. Garboczi,et al.  FRACTURE SIMULATIONS OF CONCRETE USING LATTICE MODELS : COMPUTATIONAL ASPECTS , 1997 .

[44]  M. Vaudin,et al.  Brittle intergranular failure in 2D microstructures: Experiments and computer simulations , 1996 .

[45]  R. Ritchie,et al.  Toughening mechanisms in ductile niobium-reinforced niobium aluminide (Nb/Nb3Al) in situ composites , 1995 .

[46]  M. Sarikaya,et al.  An introduction to biomimetics: A structural viewpoint , 1994, Microscopy research and technique.

[47]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[48]  O O Oni,et al.  Early histological and ultrastructural changes in medullary fracture callus. , 1992, The Journal of bone and joint surgery. American volume.

[49]  S. Weiner,et al.  Intercalation of sea urchin proteins in calcite: study of a crystalline composite material. , 1990, Science.

[50]  William A. Curtin,et al.  Brittle fracture in disordered materials: A spring network model , 1990 .

[51]  D. Srolovitz,et al.  Brittle fracture in materials with random defects. , 1989, Physical review. B, Condensed matter.

[52]  M. Kanninen,et al.  Advanced fracture mechanics , 1985 .

[53]  A. G. McLellan Virial Theorem Generalized , 1974 .

[54]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[55]  Markus J. Buehler,et al.  Tu(r)ning weakness to strength , 2010 .

[56]  A. V. Duin,et al.  Multi-paradigm modeling of dynamical crack propagation in silicon using the ReaxFF reactive force field , 2006 .

[57]  J. Aizenberg Nanomechanics of Biological Single Crystals , 2006 .

[58]  R O Ritchie,et al.  Mechanistic aspects of fracture and R-curve behavior in human cortical bone. , 2005, Biomaterials.

[59]  Martin Ostoja-Starzewski,et al.  Lattice models in micromechanics , 2002 .

[60]  Gavin A Buxton,et al.  A lattice spring model of heterogeneous materials with plasticity , 2001 .

[61]  Brian Moran,et al.  Crack tip and associated domain integrals from momentum and energy balance , 1987 .

[62]  E. Radin,et al.  Bone remodeling in response to in vivo fatigue microdamage. , 1985, Journal of biomechanics.

[63]  Jd Landes,et al.  THE J INTEGRAL AS A FRACTURE CRITERION , 1972 .

[64]  H A Kreutzmann,et al.  [Fundamentals of ceramics]. , 1972, Zahntechnik; Zeitschrift fur Theorie und Praxis der wissenschaftlichen Zahntechnik.

[65]  Boris Polyak The conjugate gradient method in extremal problems , 1969 .

[66]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[67]  HighWire Press Philosophical transactions of the Royal Society of London. Series A, Containing papers of a mathematical or physical character , 1896 .