Prompt Alternating-Time Epistemic Logics

In temporal logics, the operator F expresses that at some time in the future something happens, e.g., a request is eventually granted. Unfortunately, there is no bound on the time until the eventuality is satisfied which in many cases does not correspond to the intuitive meaning system designers have, namely, that F abstracts the idea that there is a bound on this time although its magnitude is not known. An elegant way to capture this meaning is through Prompt-LTL, which extends LTL with the operator FP ("prompt eventually"). We extend this work by studying alternating-time epistemic temporal logics extended with FP. We study the model-checking problem of the logic Prompt-KATL*, which is ATL* extended with epistemic operators and prompt eventually. We also obtain results for the model-checking problem of some of its fragments. Namely, of Prompt-KATL (ATL with epistemic operators and prompt eventually), Prompt-KCTL* (CTL* with epistemic operators and prompt eventually), and finally the existential fragments of Prompt-KATL* and Prompt-KATL.

[1]  Wojciech Jamroga,et al.  Module Checking of Strategic Ability , 2015, AAMAS.

[2]  Martin Zimmermann,et al.  Cost-Parity and Cost-Streett Games , 2012, FSTTCS.

[3]  Orna Kupfermant,et al.  Synthesis with Incomplete Informatio , 2000 .

[4]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 2002, JACM.

[5]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.

[6]  Joseph Y. Halpern,et al.  "Sometimes" and "not never" revisited: on branching versus linear time (preliminary report) , 1983, POPL '83.

[7]  Pierre Wolper,et al.  An automata-theoretic approach to branching-time model checking , 2000, JACM.

[8]  Alessio Lomuscio,et al.  Verifying and Synthesising Multi-Agent Systems against One-Goal Strategy Logic Specifications , 2015, AAAI.

[9]  Orna Kupferman,et al.  Module Checking Revisited , 1997, CAV.

[10]  John H. Reif,et al.  The Complexity of Two-Player Games of Incomplete Information , 1984, J. Comput. Syst. Sci..

[11]  Martin Zimmermann Optimal bounds in parametric LTL games , 2013, Theor. Comput. Sci..

[12]  Michael Wooldridge,et al.  Tractable multiagent planning for epistemic goals , 2002, AAMAS '02.

[13]  Alessio Lomuscio,et al.  MCMAS: A Model Checker for the Verification of Multi-Agent Systems , 2009, CAV.

[14]  Amir Pnueli,et al.  On the synthesis of a reactive module , 1989, POPL '89.

[15]  Ferucio Laurentiu Tiplea,et al.  Model-checking ATL under Imperfect Information and Perfect Recall Semantics is Undecidable , 2011, ArXiv.

[16]  Aniello Murano,et al.  Pushdown module checking with imperfect information , 2007, Inf. Comput..

[17]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[18]  Orna Kupferman,et al.  From liveness to promptness , 2009, Formal Methods Syst. Des..

[19]  Cheng Luo,et al.  Improved Bounded Model Checking for a Fair Branching-Time Temporal Epistemic Logic , 2010, MoChArt.

[20]  Aniello Murano,et al.  Reasoning About Strategies: On the Model-Checking Problem , 2011, ArXiv.

[21]  Xiaowei Huang,et al.  An Epistemic Strategy Logic (Extended Abstract) , 2014, SR.

[22]  Rajeev Alur,et al.  Parametric temporal logic for “model measuring” , 2001, TOCL.

[23]  Wojciech Jamroga,et al.  Constructive knowledge: what agents can achieve under imperfect information , 2007, J. Appl. Non Class. Logics.

[24]  Alessio Lomuscio,et al.  MCMAS-SLK: A Model Checker for the Verification of Strategy Logic Specifications , 2014, CAV.

[25]  Aniello Murano,et al.  On Promptness in Parity Games , 2013, LPAR.

[26]  Axel Legay,et al.  Pushdown module checking with imperfect information , 2013, Inf. Comput..

[27]  Krishnendu Chatterjee,et al.  Finitary winning in ω-regular games , 2009, TOCL.

[28]  Yoram Hirshfeld,et al.  Promptness in omega-Regular Automata , 2010, ATVA.

[29]  Wojciech Jamroga,et al.  Comparing variants of strategic ability: how uncertainty and memory influence general properties of games , 2014, Autonomous Agents and Multi-Agent Systems.

[30]  Steen Vester Alternating-time temporal logic with finite-memory strategies , 2013, GandALF.